
with code samples in TypeScript

The Craft
Of Software Development
- A Practical Introduction

SEBASTIAN FELLING

E
A

R
L
Y

D

R

A

F
T
!

R
e
v

8
6

(
2
2

J
u
n
e

2
0
2
3
)

The Craft of Software Development

— A Practical Introduction

Copyright © 2023 by Sebastian Felling

Critical and honest comments on your reading experience as well as suggestions

for future improvements are highly appreciated. Please send your comments via

e-mail or check the book's website to get in contact.

www.craftofsoftware.dev

seb@craftofsoftware.dev

Book Version: Rev 86 (22 June 2023)

Generated on Thu, 22 Jun 2023 07:38:50 GMT

Commit #n.a. / Renderer v1.7.1.0

Profile: Debug-Digital

https://www.craftofsoftware.dev/
mailto:seb@craftofsoftware.dev

To Alicia.

Wherever life may take you,

your loving heart

and your sharp mind

will always guide you.

To all the teachers and scientists

teaching us critical thinking,

independence, humbleness,

and, above all, humanness.

4
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

Table of Contents

Chapters
Introduction

0 What this Book Is About and Who Might Want to Read It ...7

1 Truths and Myths About Software Development .. 13

Hands-On Exercises

2 Project: A Simple Markdown Processor ... 19

Appendices

A Endnotes ... 61

A1 On Counting the Developer's Way ... 61

A2 On Grammar, Words, and Natural vs. Artifical Languages .. 63

A3 On Technique vs. Technology .. 64

A4 On Trade-Offs and Trade-Off Continua .. 66

A5 On Iterative vs. Incremental Processes and Software Development 67

A6 On Tight Feedback Loops .. 68

A7 On Brains vs. Computers ... 69

A8
On Separation of Concerns ... 70

A9
On Naming Things ... 70

A10
On Assessing Complexity ... 71

A11
On Premature Abstractions ... 71

B Setting Up A Development Environment .. 72

C Short Introduction to TypeScript ...73

Table of Contents
5

Keywords
Abstraction ... 16

Abstraction, premature 44

Client, vs. Server ... 28

Encapsulation .. 28

Functional Decomposition 33

Identifier ... 70

Implementation ... 28

Information Hiding .. 28

Interface ... 28

Levels of Indentation (LOIs)31

Lines of Code (LOCs) .. 15

Lookahead .. 45

Markdown ... 19

Off-By-One Error (OBE)62

Pair Programming .. 14

Parser .. 45

Refactoring ... 44

Regression Testing ... 26

Separation of Concerns (SOC)70

Server, vs. Client ... 28

Spaghetti Code ... 8

Stack ..55

Technique (vs. Technology) 64

Technology ... 64

Token .. 45

Trade-Off ... 17

Tutorial Hell .. 9

Unit Testing .. 24

YAGNI ... 44

Illustrations
Image 2.1: The rendered Markdown sample ... 21

Image 2.2: The hierarchical structure of markdown text .. 29

Image 2.3: Markdown tokens vs. a stream of characters ... 46

Image 2.4: HTML as a stack-based language ..55

Image A1.1: Memory Allocation of an Array ... 62

Image A3.1: Technique vs. Technology ... 65

Image A4.1: A Typical Trade-Off Continuum ..67

Image A6.1: Tight Feedback Loop ... 69

Listings
Listing 0.1: Some sample code to self-assess your programming knowledge. 7

Listing 2.1: A sample Markdown file ... 20

Listing 2.2: Parsing a simple markdown paragraph .. 23

Listing 2.3: Extending our code in order to support headings .. 24

Listing 2.4: Adding a new test that checks if our headings support works ... 24

Listing 2.5: Adding a new test that checks if multiple lines are supported ... 25

Listing 2.6: Extending our code to support multiple lines ... 25

Listing 2.7: The new check(...) helper function facilitates testing .. 27

6
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

Listing 2.8: Testing code passed to the test helper function .. 27

Listing 2.9: A new test to see if italic formatting works ... 29

Listing 2.10: Our modified function now supports italics inside paragaphs .. 29

Listing 2.11: We extracted the HTML generation logic into its own class. .. 33

Listing 2.12: The modified toHtml(...) function. .. 34

Listing 2.13: The new processMarkdownLine(...) function. .. 34

Listing 2.14: The modified processMarkdownLine(...) function. .. 35

Listing 2.15: The extracted functions. ... 36

Listing 2.16: The new unit test. .. 37

Listing 2.17: The extracted logic that handles inline Markdown. ... 37

Listing 2.18: The modified functions delegate the handling of inline Markdown.38

Listing 2.19: The new unit tests check for bold text. ... 39

Listing 2.20: The modified inlineMarkdownToHtml(...) function now supports bold text.39

Listing 2.21: Our entire codebase after having implemented seven features. 41

Listing 2.22: The Text Domain handles a stream of characters ...46

Listing 2.23: The Markdown Domain handles Markdown tokens ... 50

Listing 2.24: The HTML Domain handles building up the HTML output ... 52

Listing 2.25: The Markdown Processor brings all subdomains together .. 56

Listing 2.26: Adding a new test case for unordered list items ... 58

Listing 2.27: Adding a new token type: UnorderedListItem ... 58

Listing 2.28: Extending the Tokenizer class to recongize UnorderedListItems58

Listing 2.29: Extending the MarkdownProcessor class to translate UnorderedListItem tokens 59

Listing A1.1: A typical Off-By-One Error when iterating over the elements of an array. 62

Listing A1.2: A declarative programming style can avoid OBEs in for loops. .. 63

Ch. 0: What this Book Is About and Who Might Want to Read It
7

What this Book Is
About and Who Might
Want to Read It

The introductory chapter discusses the motivation behind this book and its target audience. It also

lays out the contents of its parts, introduces some programming lingo, and answers questions the

readers might have. A1

What is this book about?
This book teaches the craft of software development through practical exercises. It exemplifies and

explains the principles and best practices of the field as well as the reasoning behind them. The key

learning objective is writing maintainable software in the real world through an informed application

of such principles and practices.

What is the target audience?
The following chapters are written for readers who are already familiar with the very basics of

programming but seek practical guidance on learning the techniques necessary to apply their

knowledge to solve real-world problems.

I'm sure your next question is: Am I ready for this book? Before we discuss some of the defails of that

question, let's test your general programming language. If the code in Listing 0.1 makes sense to you

(independent of whether you already know TypeScript or not), you are most likely ready for this book:

class Mail
{

 constructor(

 private _recipient: string
)

 {}

 public get recipient()

 {
 return this._recipient;

 }

sample-code.ts

1

2

3

4

5

6

7

8

9

10

11

8
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

Is this the right book for me?
The target audience of this book is relatively broad. Thus, a few questions might help you decide if this

is the right book for you:

You have never written a single line of code but would like to know how to do so? This book is

too steep of a learning curve for you. But don't worry! Find an introduction for

beginnersFurtherReading , learn the basics of programming, and then come back here. Once you have

learned to write simple applications (like the famous Tic Tac Toe game, or a To-Do List), you are ready

to dive into the chapters of this book.

You already know how to write a simple FizzBuzz or Tic Tac Toe app (a text-based console or

JavaScript app is enough) but fail at writing more sophisticated solutions because you don't

know where to start, or because complexity amounts and you end up with Spaghetti Code? This is

your book! It will show you how to plan and execute real-world projects writing clean and

maintainable code that you (or your colleagues) will find easy to read and extend.

You are pretty good at programming and want to learn all there is about TypeScript? This is not

your book, either. While it does use TypeScript in its source code listings and projects, it only

uses it as a vehicle to get practical aspects across. This is not a book teaching the peculiarities of

TypeScript!

Listing 0.1: Some sample code to self-assess your programming knowledge.

 public textBody: string;
 public subject: string;

}

const mail = new Mail("seb@craftofsoftware.dev");

mail.subject = "Greetings!";
mail.textBody = "Hello, Seb!";

mail.send();

12

13

14

15

16

17

18

19

20



Spaghetti Code is a derogatory word for code that is hard to reason about

because it lacks structure. It tends to be needlessly convoluted, filled with

unwieldy control flow logic, and generally mixes concerns that had better

be separated. A lack of abstraction or overuse of the wrong kinds of

abstraction usually come with it.

De
ve

lo
pe

r
Sp

ea
k

Ch. 0: What this Book Is About and Who Might Want to Read It
9

You have learned the basics of JavaScript or TypeScript and would like to create your first very

own applications but are stuck in Tutorial Hell? You know how to swim but lose your

confidence in deep waters because of a lack of guidance? This is your book, too! It will show you how

to start with a given problem and work your way towards a fully functioning solution in code.

If you have done some basic programming before but in a language other than TypeScript (the

language we will use here), you are good to go as long as you are willing to learn it. Don't worry, we

won't go deep into the paculiarities of types. In fact, we will only use a small subset of all of

TypeScript's features (classes, properties, inheritance, and the like). To help you get up to speed, there

is a short introduction to the language in the appendix: Appendix C: Short Introduction to TypeScript (p.

73).

Should you still feel unsure about whether this is the right book for you, check out the Table of

Contents (p. 4) as well as the keyword index there. Both should give you a good idea of what to expect.

What kind of content can I expect?
This is what we will be covering:

The introductory part (Part I: Introduction) lays the groundwork for the coming chapters and

discusses general notions of the field of software development. It also debunks some myths

about what development or developers are.

This is a teaching book, so expect lengthy discussions with lots of exercises and examples.

These will make up most of the entire contents (Part II: Hands-On Exercises). I try to keep

discussions on point, so I will occasionally push lengthier comments and food for thought into

the Appendix A: Endnotes (p. 61) when these are deemed important but might distract from the

current discourse. These notes are referenced in superscript using an Ax notation, where A

stands for Appendix and x stands for the number of the note, e.g. A1, A2, etc.

No teaching book would live up to its name without exercises. You can expect a lot of exercises

in this book. You will stumble upon these throughout the text in the form of prompts marked

with a pen . They prompt you to stop reading immediately (really, stop immediately!) and start

acting, e.g. writing code, taking notes, do some brainstorming or thinking. When you think you

Tutorial Hell is what novice developers frequently find themselves in.

After having learned the basics of programming through web tutorials

and videos online, they venture into their first solo project (without any

guidance from a tutor) and get stuck because there is no clear way

forward. Instead of pushing through, they resort to yet another tutorial,

thus ending up in a vicious circle that is hard to escape.

De
ve

lo
pe

r
Sp

ea
k



10
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

are done (or stuck), you can resume reading and compare your results to the results offered in

the discussion thereafter. I strongly encourage you to do these exercises, as they are the most

important part of this book. You will learn a lot from them!

Terminology is key, so expect a good deal of "developer speak", which is explained in colored

boxes the first time a term is used. The concepts and ideas contained therein are usually

accompanied by examples, though sometimes these can also be found in the context around

the colored boxes. You can find an alphabetical listing of all these keywords in the Table of

Contents (p. 4), which also lets you jump to these directly.

There's only so much you can discuss in a single book. For those that seek further material

worth consuming, I list additional resources (e.g. books and links to web sites) in "further

reading" boxes that are referenced using prompts marked with a mortar boardFurtherReading .

These boxes can generally be found at the end of every chapter. Most of these come with a link

where you can read free content or at least download sample chapters of commercial books.

Finally, key principles of software development are referenced using visual marks with a

compass . This is done to emphasize their importance as they guide us through the often tough

course of decision making.

Programming, software development, computer science: What's
the difference?
This book takes a pragmatic approach to software development. We are not going to engange in

lengthy theoretical discussions (although theory is touched upon for explanation and to fuel

engagement). Accordingly, we won't make a difference between programming and software

development. For all practical reasons, they are the same thing.

One point deserves special mention, though: We are not dealing with computer science here, or at

least not with the academic subject thereof. Instead, we will apply its practical implications in the

context of software development, which is understood here as a practical craft, not an academic field.

While computer scientists are concerned with academic, largely theoretical questions to further the

science itself, software developers apply such knowledge to create solutions outside of academia.

Having said that, software development and computer science are not at odds with one another.

Rather, they complement each other and share great overlap. Computer science is an ideal base to

start a career as a software developer. However, it is not the only way to do so, nor is it better than any

of its alternative ways of getting into the field. 1





1. Gatekeeping is a vanity that holds no value. Instead of discouraging people, we will focus on enbling them. Computer science
courses don't teach magic. Anything that is taught in curricula at colleges and universities can just a well be learned outside of
them.

Ch. 0: What this Book Is About and Who Might Want to Read It
11

Is software development really a craft?
There are many reasons why software development can be considered a craft, and I find them all

convincing.

If we interpret craft as something that is produced skillfully by hand, then software development

fits the bill perfectly. Our hands type code and draw diagrams, they guide our mouse or pointer

devices to create docs and illustrations, all of which play an important part in our everyday job.

A craft is a practical job that cannot be learned merely from theory. While theoretical knowledge

(such as computer science) is an ideal basis for learning software development, the craft itself can

only be learned through hands-on experience, which takes years to gather and does not stop even if

we feel comfortable and confident in what we are doing.

One last point worth mentioning: Crafts are passed on from experienced craftspeople, who teach

those that are willing to learn them. An ideal way to learn a craft is through a mentorship. Software

development is a great match as its practice is heavily based on experience, which can be passed on

from a mentor to a mentee. Viable alternatives to mentorships exist in the form of group learning on

any of the plenty coding platformsFurtherReading , most of which offer free contents and exercises.

12
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

If you are completely new to programming, the following sources

introduce you to the very basics:

How Computer Programming Works. Daniel Appleman. Apress.
2000.
https://link.springer.com/book/9781893115231

How Computers Work. Roger Young. Apress. 2. 2009.

Once you have covered the basics, it’s time to dive into your first programming language

and the essentials of data structures and algorithms. These are great picks that are easily

approachable:

C# Programming for Absolute Beginners: Learn to Think Like a Programmer and
Start Writing Code. Radek Vystavěl. Apress. 2021.
https://doi.org/10.1007/978-1-4842-7147-6

Automate the Boring Stuff with Python. Practical Programming for Total
Beginners. Al Sweigart. No Starch Press. 2nd Edition. 2015.
https://automatetheboringstuff.com

Codeless Data Structures and Algorithms: Learn DSA Without Writing a Single Line
of Code. Armstrong Subero. Apress. 2020.
https://doi.org/10.1007/978-1-4842-5725-8

Mentorships are a great way to learn the craft of software development. If you do not have

access to a mentor, group learning sites can be a viable alternative:

https://www.codecademy.com/

https://www.freecodecamp.org/

https://www.w3schools.com/

https://www.codewars.com/

Fu
rth

er
 R

ea
di

ng

https://link.springer.com/book/9781893115231
https://doi.org/10.1007/978-1-4842-7147-6
https://automatetheboringstuff.com/
https://doi.org/10.1007/978-1-4842-5725-8
https://www.codecademy.com/
https://www.freecodecamp.org/
https://www.w3schools.com/
https://www.codewars.com/

Ch. 1: Truths and Myths About Software Development
13

Truths and Myths
About Software
Development

This chapter discusses some false assumptions people frequently make about software developers

and their job. We will also debunk myths and peek into the everyday job of a common developer.

Software development as both the subject of intellectual exploration and professional means of

income is a vast and incredibly interesting area. Thus, it is pursued by an increasing number of people

through academic and vocational training, or simply as a hobby. Novice developers take to coding

schools, bootcamps, and the social networks searching for answers to their many questions. What is

so striking about these is the fact that many of them seem to be based on frequently recurring

distorted views of the field, and sometimes plain wrong assumptions.

Programming is for the technically inclined and mathematical
geniuses only!?
No, it is not. Plain and simple. At least generally it is not. Of course, there are branches that require a

fair amount of solid math skills and technical aptitude. If you want to work in fields like cryptography

(the field where developers deal with encoding and decoding secrets), machine learning, or

computational finance (where developers help solve practical problems in finance), solid math skills is

a requirement. In many other branches, though, math can and will definitely help you in your

everyday work but a solid high school-level understanding of it will get you a long way. And the rest

you can pick up and learn through daily practiceFurtherReading .

In any case, you need not be a math genius to become a good developer,

so don’t be discouraged by people saying so. And, more importantly, don’t

be afraid of math! If anything, math is your best friend when it comes to

learning the formal aspects of programming and will help you acquire a

whole new language for talking about real-world problems.



14
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

Developers are loners that don't like to socialize and are bad
at communication!?
Nothing could be further from the truth! Believing that developers sit in front of computer screens all

day and avoid social contact is a huge misconception. Indeed, software development is an act that

involves a lot of social contact. That’s because hardly any software is written by a single person, most

projects are a team effort.

Those teams can range from anything of two persons doing Pair Programming in the same room to

hundreds of developers working across the globe. Just imagine the kind of communication effort that

it takes to get a project through the finish line, and you begin to understand why a good command of

one's mother tongue (and the English language, too, in case they are not the same) is an absolute

must.

A key aspect of communication is language. As we will see shortly, language is a frequently

underappreciated skill that needs to be practiced and honed (a fact we tend to lose sight of because,

after all, language comes for free, right?). Developers need to be rock-solid communicators, which

means that they need to be rock-solid masters of their language. Think about it: Code is largely text,

documentation is largely text, even project management is primarily based on written language.

Whatever products we create, they most likely involve text as a medium of relaying information.

Developers write code all day!?
Among all the stereotypes discussed here, this is probably the one where expectation and reality clash

the most. Of course, a developer's responsibility is to write code. But that doesn't mean they write code

all day. In fact, the average developer probably spends a maxium of half their workday writing code, if

not much less (the actual number depends on organizational complexity, e.g. roles and team size, of

course). The rest of the day is spent on equally important jobs such as discussing requirements and

implementation, planning releases, reviewing code, writing documentation, to name just a few.

Pair Programming is the act of programming as a shared, joint

experience done by two developers at the same time on the same

codebase. Usually the two individuals take turns so that one of them

writes code while the other one watches. Discussing and reasoning

about the whys and hows of said code is an important aspect of it. The

benefits of pair programming are a deeper understanding of the

codebase, higher quality code results, and learning new

programming techniques.

De
ve

lo
pe

r
Sp

ea
k

Ch. 1: Truths and Myths About Software Development
15

And then there is also the act of reading code, which is an art in and of itself. It can be argued that

reading code is more important for a developer than writing it. As some estimates have it, every

line of code is written only once but read at least ten times. From a quantitative point of view,

developers spend about ten minutes reading for every line of code that takes them one minute to

write.

Consequently, we better focus our efforts on making code easily readable and understandable

instead of opting for an easy and quick writing experience. Sadly, the reality out there is sometimes

the exact opposite and developers (both novice and experienced) optimize code for their writing

experience while neglecting the effort needed to read it.

Developers write code for machines!?
One might be inclined to assume this, but it's generally not true. Yes, the ultimate need to write code

comes from the fact that machines don't understand natural language (a kind of code itself, if you

come to think of it). What kind of language do machines understand instead? As it turns out, they are

pretty good with digits and computations. But this is where human beings usually fall short, we're

much better with natural words. A2

If you write low-level code, that is code in a machine language or very close to it (e.g. Assembly),

then you are writing code for the machine. This kind of code tends to read rather difficult (for us

human beings) due to its low-level details and minute style. This, of course, affects the way we

maintain such code. Low-level code works well for hardware-related operations but is rather

cumbersome to use for anything closer to the more abstract application-level.

Higher-level languages (such as JavaScript, TypeScript, Java, C, C++), on the other hand, use the

power of abstraction and work well for application-level development. These languages overcome

the shortcomings of machine language and were specifically created to be easily readable by humans,

not machines. This is also why they do not run on the 'bare metal' directly but are translated to

machine language either statically (compiler) or on-the-fly (e.g. through a Virtual Machine).

Lines of code (LOCs) refers to a quantitative measurement of source code

as the total amount of lines of text over all code files of a project. It is a

notoriously unreliable indicator of a developer's productivity, which

unfortunately doesn't keep some management folks from using it as

such anyway.

De
ve

lo
pe

r
Sp

ea
k

16
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

The problem with high-level languages is that writing readable code does not come for free and is

certainly not a given. It is akin to the craft of authoring books and literature: Writing alone is a

necessary requirement to become a good writer, but it is not a sufficient one. Like any craft, mastering

it takes practice. Thus, writing code that is formally correct to be run by a machine, functionally

correct to fulfill its requirements, and still readable and maintainable by humans, is what the job of

software development is all about. To say it with the words of an experienced developer:

Any fool can write code that a computer can understand. Good
programmers write code that humans can understand.

— Martin Fowler (Refactoring: Improving the Design of Existing Code)

Throughout this book, we will explore many practices and principles that help us write readable and

maintainable code.

There is only one "right" way of doing sofware development!?
We live in a complex world and the field of software development is no different. There's an old adage

among developers stating that "there are no silver bullets" 2 , and that little gem holds up rather

nicely.

In the same mood it can safely be stated that there is no single "right" way of doing things in our

field. We always have a choice among different, competing techniques and technologies, so there are

always nuances to be considered. A3 This is both a blessing and a burden at the same time: because it

forces us to think less in terms of right and wrong, and more in terms of gradual and highly nuanced

trade-offs .

Abstraction is a key concept in software development. It is on one side

of a continuum that has implementation ("concretion") as the opposing

extreme. Abstraction generally refers to a view of things from a higher-

up perspective. One that is more general and leaves out the lower-level

details.

For example, if we look at a school setting and see the students Alice

and Bob, who are taking German und French classes with Frau

Müller on Thursdays, we are dealing with a rather concrete view of 'school'.

The opposing view, the abstraction, would be to look at it from a functional perspective: An

environment where students learn languages. The abstract view gets rid of irrelevant

details in favor of a more holistic picture.

De
ve

lo
pe

r
Sp

ea
k

”

2. The WikiWikiWeb attributes the adage to the famous Frederick P. Brooks, Jr., see https://wiki.c2.com/?NoSilverBullet

https://wiki.c2.com/?NoSilverBullet

Ch. 1: Truths and Myths About Software Development
17

Certainly, broad generalizations in tech have a strong appeal — especially among novice developers,

who lack the experience and deep understanding of their choices and thus seek simple answers to

their questions. 3 But that doesn't make them right. Sadly, many developer veterans resort to them,

too, partly for a lack of willingness to explain and discuss things, partly because they really believe in

them.

And then, there are enough developers out there opinionated to a point where they refuse to accept

views opposing their own experience. While that might be human and understandable, there is no

point in defending a single truth like a religious zealot. Instead, we need to accept that every developer

speaks from a single point of experience. No two developers are alike and experiences vary greatly,

thus we ave to come to terms with the fact that there are multiple truths out there. Some go well with

one another, others are downright mutually exclusive. That's okay, let's embrace differing (even

opposing) views and pick the tools and practices that work for us. For if we do opt for simplistic views

and simple answers, instead, we might just end up with another case of Maslow's hammer. 4

A trade-off is simply a compromise, a deal between two (usually

opposing) goods: you get one thing in exchange for another. Or, more

realistically speaking, you get more of one thing in exchange for less of

another. To give a simple example, every purchase we make is such a

trade-off: We give money and get a certain commodity in return.

Software development is all about trade-offs because software

systems touch on so many qualities that compete with one another.

An advantage we gain at one end is likely to be paid for with a

disadvantage at another. The key is finding the right balance between these two that allows

us to achieve our goals while not putting too many obstacles in our way. A4

De
ve

lo
pe

r
Sp

ea
k

3. Think of the common questions on social media along the lines of "What is the best programming language/backend
tech/IDE?"
4. Also known as The Law of the Instrument: When all you have is a hammer, everything becomes a nail. See:

https://www.wikiwand.com/en/Law_of_the_instrument

https://www.wikiwand.com/en/Law_of_the_instrument

18
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

The following chapters are the result of over twenty years of

developing software in various contexts and teaching the craft for

over five years. The lessons I share here should be considered advice

that has proven worthwhile and useful on my journey. I am not

proposing anything as the ultimate truth or as a solution without

alternatives.

Rather than following my advice blindly, I'd like you to consider it

critically and see if it works for you. I am optimistic you can find great value in much of the

content presented here but might occasionally opt for alternative solutions. That's

absolutely okay, because only you know best what works in your situation.

Should you come across parts where your experience differs greatly from mine, please

do not hesitate to contact me and let me know. I'm grateful for honest feedback and I trust

we can have lots of wonderful discussions based on mutual respect and a passion for

coding.Wo
rd

 of
 C

aut
io

n

In case you want to brush up your high school math, here are a few

sources that look at math from a developer’s perspective:

Good Math. A Geek’s Guide to the Beauty of Numbers, Logic, and
Computation. Mark Chu-Carroll. The Pragmatic Programmers,
LLC. 2013.
https://pragprog.com/titles/mcmath/good-math/

Math for Programmers. 3D graphics, machine learning, and simulations with
Python. Paul Orland. Manning Publications Co. 2020.
https://www.manning.com/books/math-for-programmers

Doing Math with Python. Amit Saha. No Starch Press. 2015.
https://nostarch.com/doingmathwithpython

Fu
rth

er
 R

ea
di

ng

https://pragprog.com/titles/mcmath/good-math/
https://www.manning.com/books/math-for-programmers
https://nostarch.com/doingmathwithpython

Ch. 2: Project: A Simple Markdown Processor
19

Project: A Simple
Markdown Processor

It's time to dive into some code: Our first hands-on project involves a simple Markdown processor.

It will give us ample opportunity to explore practical approaches to solving real-world problems. We

will cover some best practices and introduce basic terminology of modern software development.

Why reinvent the wheel?
Under real-world conditions we would most likely not implement our own Markdown processor. The

common adage is: Don't reinvent the wheel. And indeed, there are plenty of Markdown processors out

there. When faced with a technological problem, it's good practice to look for existing solutions first

before embarking on writing our own. If we can use what is already available, why waste time and

effort on re-implementing it?

Well, it turns out there are a few good reasons that justify reinventing the wheel. Can you think of

some?

Markdown is a lightweight markup language, i.e. a way to enrich plain

text with structural information and visual formatting. It's so simple in

form that it can be considered an anti-markup (hence the name

Markdown).

Markdown was invented by John Gruber and Aaron Swartz in 2004 as a

way to allow users "to write [formatted text] using an easy-to-read, easy-

to-write plain text format, then convert it to structurally valid

[HTML]" 5 .

Since Gruber's and Swartz's first proposal, Markdown has evolved into various flavors,

and multiple specifications exist. CommonMark has become the de-facto standard in tech.
6

De
ve

lo
pe

r
Sp

ea
k



5. See https://daringfireball.net/projects/markdown/

6. See https://spec.commonmark.org/

https://daringfireball.net/projects/markdown/
https://spec.commonmark.org/

20
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

A very good reason is: for learning purposes. Practice makes perfect, and that's where re-

implementing solutions to common problems holds a lot of value. If a plethora of solutions already

exist (preferebly in the language of your choice), then chances are you can go and look for help, or find

inspiration, or learn from other people's mistakes, and so on. That makes for a pretty good learning

experience where you can get your hands dirty, and still have a safety net. And that's exactly what we

are doing here, too. So, let's get our hands dirty!

Picking a development environment
We won't spend any time setting up our work environment here. I trust that you are familiar with your

needs and have already picked your favorite code editor or IDE. If you are unsure what environment to

pick, please have a look at Appendix B: Setting Up A Development Environment (p. 72).

Formatting text with Markdown
Markdown is a popular markup language used in technical writing and on blogs. Even though it is

concise, simple, and easy on the eye, it still allows for a broad range of text formats. Unlike markup

languages (e.g. HTML, XML), which can easily look convoluted, its intention is "to be as easy-to-read

and easy-to-write as is feasible" 7 .

Have a look at the Markdown file in Listing 2.1 . It shows plain text that is interspersed with special

characters. These characters control the visual formatting of the text.

This is an example of Markdown

Here comes a simple paragraph.

We can also create lists:

* This is a list item.

* This is another list item.

Ordered lists are possible, too:

1. This is the first item.

2. This is the second item.

And here is another paragraph containing *italic text* and a [link]

(https://www.craftofsoftware.dev/).

Here is a level-2 heading

We can also add **bold** text.

markdown-example.md

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

↪
16

17

18

19

7. See https://daringfireball.net/projects/markdown/syntax

https://daringfireball.net/projects/markdown/syntax

Ch. 2: Project: A Simple Markdown Processor
21

Image 2.1: The rendered Markdown sample

Running the plain text through a Markdown processor 8 presents us with the outcome we see in

Image 2.1

Comparing the Markdown source with the visual results, the semantics of the special characters

should become apparent. Can you infer those semantics?

This is how Markdown works: Lines beginning with and are rendered as primary and

secondary headings, respectively. Lines starting with are turned into list items, whereas those

starting with numbers like , , etc. create numbered list items. Notice that the trailing single

space in all those cases is important as without them the lines would be just recognizes as regular text.

So far, we have listed block-level elements (based on lines). There are inline elements, too: Enclosing

text within renders it italic, makes it bold. Even links can be created using the

 pattern.

This is how our Markdown file is rendered after running it through

a processor.

Listing 2.1: A sample Markdown file



*

1. 2.

* **

[Text](https://url/)

8. That's a program that translates Markdown text into visuals, e.g. HTML. Dingus is a good example, see
https://daringfireball.net/projects/markdown/dingus .

https://daringfireball.net/projects/markdown/dingus

22
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

The translation of Markdown into formatted text looks straightforward. Let's see if we can come up

with a solution in code that takes Markdown text as input and spits out the corresponding text

formatting. For the purpose of this exercise, we will translate Markdown into simple HTML.

Note that we won't cover the entire CommonMark specification since such an endeavor would be

beyond the scope of this book. We will limit our implementation to the features shown in Listing 2.1 ,

that is headings (primary and secondary), paragraphs, lists (unordered and ordered), links, and

italic/bold text.

A core principle of software development
Before we set out to write our first lines of code, let us quickly discuss a core principle of software

development that shall serve as an invaluable guideline for our work in general, and the coming

chapters in particular:

Complex, working systems evolve from less complex, working systems.

— Gall's Law (serving as a principle of software development)

Gall's Law has, in fact, not originated in software development but in the field of systems design, a

school of thought that has great overlap with software engineering. It serves as such an important

guideline that it is not too far-fetched calling it a "principle of software development". Let's take it

apart and see why it is so important.

The word "system" refers to a non-trivial software solution. Any codebase we write can be described

as such a system. These systems should ideally be "complex" and "working". The combination of these

two adjectives is key here. If we were just talking about "complex systems" alone (without the

"working" part), we would include failing systems. Indeed, creating just complex systems is an easy

thing to achieve as complexity is naturally given in non-trivial codebases and (without proper

safeguards in place) failure is an all-too-common consequence. But such failing systems are not what

Gall's Law is about.

"[C]omplex, working systems" are also not merely working systems, which (again) could be pretty

easy to achieve if such systems were just trivial in nature. Obviously, the challenge here is the

combination of a system that "works" despite all of its inherent "complexity".

There is a second aspect to the principle that deserves discussing: "Complex, working systems" do

not appear out of the blue. They are also not mere coincidences or whims of nature. Instead, those

systems evolve in a piecemeal fashion: iteratively und incrementally. A5 They are not born out of

overly complicated specifications but fall into place through disciplined trial-and-error, through

informed decision-making, designing, and testing under a tight feedback loop. A6

Now, what makes Gall's Law so valuable to inexperienced developers? Its logic implies that every

complex, working solution ultimately started out as the simplest, working version of itself.

”





Ch. 2: Project: A Simple Markdown Processor
23

Unsurprisingly, this is exactly how we build software in real life: starting with the simplest solution,

then adding value incrementally and iteratively.

Unlike common belief sometimes has it, the process of writing software is not linear. Developers

don't write solutions from cover to cover, if you will. Far from! Rather, the entire process works

iteratively, where each iteration looks at the existing codebase, rearranges some parts, rewrites other

parts, deletes again other parts entirely, and adds completely new parts. Yes, you heard that right:

Sometimes, in order to go a step ahead, we first have to go two steps back! If we realize that something

that was written previously doesn't work out, we are well advised to consider deleting or replacing it.

There is nothing wrong with that. Indeed, being afraid of deleting code is like writing an essay without

being allowed to use the backspace key. It's a recipe for disaster.

The idea of writing a solution linearly from start to finish is an idealized notion that does not hold

for non-trivial software systems. So, the key takeaway here for new developers is: Always start with the

simplest solution imaginable, and improve it one step at a time. 9

Starting with the simplest solution imaginable...
We will follow Gall's Law rigidly, so we start with the simplest solution imaginable and let it grow

gradually. To start off, we want to write some logic that takes a single line of Markdown (a simple

paragraph) as an input and generates the corresponding HTML.

The simplest meaningful logical unit in a high-level programming language such as TypeScript is a

function, so this is what we will use for now. We need a simple function that receives as input some

Markdown like and returns the corresponding HTML

. Write such a function . 10

When done, compare your solution to the function in Listing 2.2 :

There's not much going on code-wise. All we do is wrap the input string in paragraph tags (line 3). It is

worth mentioning that we check the output (the HTML code returned from our function) manually by

logging it to the console (line 7). This kind of poor man's Unit Testing will suffice for the time being,

though we will find a more convenient method of testing soon.



Here comes a simple paragraph.

<p>Here comes a simple paragraph.</p> 
toHtml(...)

Listing 2.2: Parsing a simple markdown paragraph

function toHtml(markdownLine: string): string

{
 return `<p>${markdownLine}</p>`;

}

const html = toHtml("Here comes a simple paragraph.");

console.log(html);

markdown-processor/processor-v1.ts

1

2

3

4

5

6

7

9. This very idea is also the premise of a practice called 'Test-Driven-Development', which we will read about later.
10. For the remainder of this chapter, we will assume that the Markdown we feed into our functions does not contain any
special characters like or that we would otherwise have to escape in our HTML.< >

24
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

... and extending it one feature at a time
Let's add a new feature: Processing headings. Whenever there is a line that starts with a single

followed directly by a space character, we want our processor to return a primary heading (an in

HTML). Modify your solution so that it handles both simple paragraphs and primary headings.

Given our previous solution, we just rewrite the function body as in Listing 2.3 :

The code in Listing 2.3 receives as input and returns

. We make sure the code works as expected by adding

another test, see Listing 2.4 .

Unit Testing is the automated (code-based) testing of source code

usually done from within the development environment.

Unit tests are pieces of code that quickly execute small, meaningful

parts ("units") of a solution to assert that their behavior is as expected.

For example, when writing a tic tac toe game, a unit test would arrange

a new round in a state where player X has already crossed two

consecutive cells and is about to start a new turn. The test would have

the player act so that they cross the third consecutive X. The test would

then assert that the game logic is handling this state correctly by declaring X the winner of

the match.

De
ve

lo
pe

r
Sp

ea
k

#

h1



Listing 2.3: Extending our code in order to support headings

function toHtml(markdownLine: string): string

{

 if(markdownLine.startsWith("# "))
 {

 return `<h1>${markdownLine.substring(2)}</h1>`;

 }

 return `<p>${markdownLine}</p>`;
}

markdown-processor/processor-v2.ts

2

3

4

5

6

7

8

9

10

This is an example of Markdown

<h1>This is an example of Markdown</h1>

Listing 2.4: Adding a new test that checks if our headings support works

const htmlForHeading = toHtml("# This is an example of Markdown");

console.log(htmlForHeading);

markdown-processor/processor-v2.ts

17

18

Ch. 2: Project: A Simple Markdown Processor
25

Our new feature is working. And more importantly, our previous feature (paragraph input) still works

as expected, too. Remember that we keep adding tests, so all previous tests will be run together with

all the new ones we add.

This is good progress but the use case is still very limited. Both solutions only ever handle a single

line of Markdown. Let's see if we can come up with a solution that can handle multiple lines. From now

on, we will add a test first and then add code to make the test pass. This gives us a better starting point

for writing code: Figuring out a good use case and example of what we need before coding out the

solution. So, let's add the test we see in Listing 2.5 :

If we ran the test now, it would produce something along the lines of

, which is not

what we want. This happens, of course, because we still have to extend our code and implement the

new feature. Modifiy your solution now to make the test pass!

We could do something like this:

The code in Listing 2.6 handles multiple lines of text that each include either a paragraph or a

primary heading. If we feed it the test Markdown given on lines 30 to 31 of our test code (Listing 2.5),

Listing 2.5: Adding a new test that checks if multiple lines are supported

const html = toHtml(`# This is an example of Markdown

Here comes a simple paragraph.`);

console.log(html);

markdown-processor/processor-v3.ts

30

31

32

<h1>This is an example of Markdown\nHere comes a simple paragraph.</h1>



Listing 2.6: Extending our code to support multiple lines

function toHtml(markdown: string): string
{

 let html = "";
 const markdownLines = markdown.split("\n");

 for(const markdownLine of markdownLines)
 {

 if(markdownLine.startsWith("# "))

 {
 html += `<h1>${markdownLine.substring(2)}</h1>`;

 }
 else

 {

 html += `<p>${markdownLine}</p>`;
 }

 }

 return html;

}

markdown-processor/processor-v3.ts

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

26
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

it returns the expected HTML

. If we run

the test now, it passes. Yay!

Separating the testing logic
Our code in Listing 2.6 works as required but has some issues that need addressing. Check the

code carefully: What bothers you?

Here's what bothers me: For starters, checking the generated output manually through the console

gets tiresome. Every time we add a new feature, we have to log (and check) the generated output to

make sure our solution works as expected.

Additionally, the testing code gets unwieldy due to verbosity and repetition. The problem is that

with each addition we not only have to test the new feature but all previous features, too. After all,

when extending our code, we don't want to break existing functionality. This kind of testing is called

Regression Testing and is good practice in software development.

To make life easier with regression testing, we have to come up with a plan. Can you think of a way

to get rid of the repetition and tedious checks?

Clearly, we could write a little helper function that gets rid of the repetition and the manual checks.

Basically, we would have the computer do the checking for us. 11 The function in Listing

2.7 takes two parameters: the that gets passed to our function, and the

 code that is expected to be generated from it.

The code here is fairly simple: We generate HTML from the given Markdown code, which is then

compared to the expected HTML (that is given, too). If they are identical, the test passes and we simply

see a short log in the console output. Should the test fail, details are error-logged to the console to give

us a clue as to where the problem might be.

<h1>This is an example of Markdown</h1><p>Here comes a simple paragraph.</p>



Regression Testing is a methodology in software testing that makes

sure that code functions as expected even after making changes (like bug

fixes or feature additions).

Regression testing can be done with all types of tests and lends itself

perfectly to unit testing. The key idea is to create a suite of tests that

check the outward behavior(s) of a unit. When extending or otherwise

modifying the code of that unit, the test suite gets executed and (if

the tests pass) guarantees that the existing behavior of the unit has not

been broken.

De
ve

lo
pe

r
Sp

ea
k



check(...)

markdown toHtml(...)

expectedHtml

11. Keep in mind: Computers are very good at repetition. They never grow tired and keep working at a fast pace. Whenever you
find yourself dealing with repetetive work in code or elsewhere, consider offloading that work to your computer!

Ch. 2: Project: A Simple Markdown Processor
27

With our test helper function in place, we can now simplify our tests by calling the function for every

feature and passing in the parameter pairs needed, Listing 2.8 .

Basically, what we have done here is hide the testing logic inside a function. This technique is called

encapsulation and is one of the basic techniques used in software development.

Listing 2.7: The new check(...) helper function facilitates testing

function check(markdown: string, expectedHtml: string)
{

 const generatedHtml = toHtml(markdown);

 if(generatedHtml == expectedHtml)

 {
 console.info(`Test passed: ${markdown}`);

 }

 else
 {

 const errorMsg = [

 `Test failed: ${markdown}`,
 ` Expected: ${expectedHtml}`,

 ` Generated: ${generatedHtml}`
].join("\n");

 console.error(errorMsg);
 }

}

markdown-processor/processor-v4.ts

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Listing 2.8: Testing code passed to the test helper function

check("Here comes a simple paragraph.",

 "<p>Here comes a simple paragraph.</p>");

check("# This is an example of Markdown",

 "<h1>This is an example of Markdown</h1>");

check("# This is an example of Markdown\nHere comes a simple paragraph.",

 "<h1>This is an example of Markdown</h1><p>Here comes a simple paragraph.
</p>");

markdown-processor/processor-v4.ts

44

45

46

47

48

49

50

51

↪

28
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

The hierarchical structure of Markdown
Another issue with our current code will become obvious when we add yet another feature. So far, our

use cases are pretty simple: Headings and paragraphs. They are easy to figure out. All we have to do is

check the beginning of every line of text and we know what we are dealing with. That's because all

types of formats we support work on entire lines.

Even though Markdown is simple, it does have some degree of complexity. If you have a look at how

bold and italic text is marked up (see lines 15 and 19 in Listing 2.1), you realize that we can nest

Markdown syntax within a single line. We could, for example, have italicized text inside a header, as in

.

Nesting makes the syntax a lot more complex and requires us to rethink our current

implementation. So far, we check whether we're dealing with a heading or a regular paragraph and

spit out the relevant HTML tags with the text given. But now we will have to do additional checks for

bold and italic text. And not just that, the syntax is also no longer confined to the beginning of a new

line.

The major change in processing here is caused by the fact that we are no longer dealing with a flat,

linear structure. Instead, Markdown text is hierarchical, as seen in Image 2.2 .

Encapsulation is a technique in software development by which logic is

separated inside a self-contained unit. The idea is to hide (encapsulate) the

complexity of the logic from the user (client) of such a unit and let

them access it through a well-defined interface. Encapsulation

promotes the reusability of (frequently used) code, loose coupling, as

well as information hiding, all three central concepts to keep software

maintainable.

An interface is a well-defined way of communication between two

independent systems. When two systems interact with one another, there is usually a

client that requests the services of a server. The interaction is thus done by the client

calling functions on the server, and the server responding to these. The logic thus executed

behind the scenes in either system is called implementation, which is hidden from the

prying eyes of the other side. Positively speaking, the client does not need to know how the

server works (information hiding), and the server does not need to know what clients

are using its services.

De
ve

lo
pe

r
Sp

ea
k

This header has *italicized* text

Ch. 2: Project: A Simple Markdown Processor
29

Image 2.2: The hierarchical structure of markdown text The examples show that Markdown text isn't simply

linear and flat (A) but hierarchical (B).

Let's see how we can modify our existing solution to handle markup like the following:

. First, add a new test . It could look like that one in

Listing 2.9 .

Of course, running the code now would give us a failing test as we haven't implemented the new

feature yet. Modify your code to accomodate the new test. If you don't get it right the first time, don't

worry. Have a look at Listing 2.10 , which contains the modified version of our function.

This is a paragraph with *italic* text. 

Listing 2.9: A new test to see if italic formatting works

check("This is a paragraph with *italic* text.",

 "<p>This is a paragraph with italic text.</p>");

markdown-processor/processor-v5.ts

82

83


toHtml(...)

function toHtml(markdown: string): string
{

 let html = "";
 const markdownLines = markdown.split("\n");

 for(const markdownLine of markdownLines)
 {

 if(markdownLine.startsWith("# "))

markdown-processor/processor-v5.ts

2

3

4

5

6

7

8

9

30
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

Alright, let's run our tests and see. All tests pass, which means that the new feature works as expected.

But, let's be honest: that code is... ouch! It works but it's getting convoluted and really difficult to read.

Can you spot the problematic parts?

Look, we have just doubled the levels of indentation (LOIs) , going from three (cp. Listing 2.6) to six.

That's tough. Levels of indentation? Why would we care about those? Well, turns out there is a thing

Listing 2.10: Our modified function now supports italics inside paragaphs

 {
 html += `<h1>${markdownLine.substring(2)}</h1>`;

 }

 else
 {

 // here begins the paragraph
 html += '<p>';

 let emTagOpened = false;

 // iterate through the characters

 for(let char of markdownLine.split(""))
 {

 // a * triggers the beginning or end of italicized text
 if(char == "*")

 {

 if(!emTagOpened)
 {

 html += "";

 emTagOpened = true;
 }

 else
 {

 html += "";

 emTagOpened = false;
 }

 }

 else
 {

 html += char;
 }

 }

 // here ends the paragraph

 html += '</p>';

 }
 }

 return html;

}

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49



Ch. 2: Project: A Simple Markdown Processor
31

called complexity. And we have to talk about it.

Code complexity
The total number of levels of indentation in a function is a good measure of its complexity: the more

indentations it has, the higher its complexity usually is. Every level of indentation commonly works as

a separate logical level of reasoning. With control flow statements such as ,

, and we execute (or skip over) lines of code based on certain conditions. These

conditions are difficult for us to keep track of: the more conditions we control inside a function, the

more complex the function becomes.

Let's see how complexity increases with each level of indentation. In Listing 2.10 , what is our context

on line 4? So far, we know that we are given a of Markdown called and are to return

its HTML representation. The contextual knowledge at this point is still quite manageable.

But it gets more complex: On line 9 we have already split the Markdown string into separate lines

and are now iterating over those. The variable contains the line of the current iteration.

On line 11 we know that the current Markdown line starts with a sign and is likely a primary heading.

Contrarily, the alternative branch of the control structure (lines 15+) assumes that the current

 does not start with a sign and hance we are likely dealing with a paragraph.

Let's fast forward here and find ourselves in considerably deeper complexity right away: On line 29

we know that the current is likely a paragraph, we have separated the single characters

of the line and are now iterating over them. We have come across a char and the state of the

 variable tells us that no tag (an HTML tag used to emphasize text, which browsers

usually print in italics) had yet been opened, so we just open one.

By now it should become clear how indendations make code complex. The more contextual

information we add to a function, the more difficult it will be to make sense of. In general, complexity

is difficult to handle because it requires us to remember subtle nuances of our logic. Nuances that are

easy to forget or simply overlooked and thus demand all of our attention. Psychologically speaking,

complexity increases the mental load our brain has to deal with when reasoning about code. A7

if(...) else(...)

for(...) while(...)

Levels of Indentation (LOIs) are a visual aid that helps us reason about

source code. Code is not arranged in a strictly serial, flat order but nested

into different levels of abstractions that correspond to different levels of

horizontal indentation where each level usually works as a logical unit.

Such identation is achieved by branching off the code flow via control

structures such as and , where the code inside the control block is

indented. The indentation is removed once the control block is

exited.

De
ve

lo
pe

r
Sp

ea
k

if for

string Markdown

markdownLine

#

if

markdownLine #

markdownLine

*

emTagOpened

32
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

Increasing the mental load takes a toll on us in terms of slower thinking, higher error rates, and

faster cognitive exhaustion. Generally, more complex code makes our codebase more difficult to

maintain, which leads to more bugs, a slower turnaround of features, and increased costs. Complexity

is a constant battle in software development. Every single line of code we add to a codebase (even if it

is a very simple one) potentially increases its complexity. In this regard, complexity cannot be avoided

unless we stop coding altogether.

Ultimately, complexity can bring any project to a halt because it's only a matter of time until the

marginal costs of having to maintain yet another line of code turn prohibitive. This is why we have to

go to such great lengths to keep unnecessary complexity as low as possible. In fact, we can state this

very effort as our prime responsibility:

As software developers, our prime responsibility is managing
complexity.

— Every Developer's Prime Responsibility

What does it mean to manage complexity? Given that code complexity naturally creeps into any

codebase, we are fighting on two fronts:

1. We have to keep the total number of LOCs to a minimum,

2. while making the code we do add to the codebase as maintainable as possible.

Item (1) is a quantitative measure that tells us that every line of code we do not write works in our

favor. This is underlined by the widely known adage: Junior developers try to figure out what lines of

code to write, whereas senior developers try to figure out what lines of code not to write. A good

developer knows that solving a real-world problem through code is always a last resort. If possible, we

try to solve problems before having to write any (additional) code.

In contrast, item (2) is a qualitative measure. It is necessary because we cannot avoid writing code

altogether. If we do resort to writing code, we should at least make sure it is maintainable.

Maintainability concerns many different properties: readability, adaptability, and clear

communication of intent (to name just a few). We will learn more about these qualities later.

With this new knowledge about code complexity and why it's good to keep it to a minimum, let's

return to our Markdown processor and see how we can address the complexity issues we have

bumped into.

The logic we have implemented so far is required because there's no way we can meet the given

requirements without it. So, if Removing code is not an option, we have to tackle complexity from a

qualitative angle. Our focus should be on reducing the number of LOIs. One way of achieving this is

splitting our function up into smaller chunks. This technique is called

Functional Decomposition and is a very powerful way of managing complexity.

”

toHtml(...)

Ch. 2: Project: A Simple Markdown Processor
33

Functionally Decomposing our Code Base
Let's see which parts of our current logic can be extracted into their own functions. We first need to

identify the independent pieces it consists of and then extract these (i.e. move them into their own

functions). We can then call those subfunctions and thus restore the overall functionality.

The first thing we notice in Listing 2.10 is that our function is currently doing two

very different things: On the one hand, it is separating the Markdown input into its individual lines and

then processing each line separately. On the other hand, it is generating the resulting HTML output.

Handling Markdown input and HTML output are clearly two separate concerns that should be

separated functionally. A8

Let's extract the HTML generation logic and move it into its own class . A class

handles everything that deals with building the bits that make up our final HTML, see Listing 2.11 .

Functional Decomposition is a technique in software design that

breaks complex problems down into multiple simpler, more manageable

pieces. Each piece is an independent unit that can be implemented and

tested separately. The overall problem is then solved by combining the

results of the individual pieces. It is important to note that the word

"functional" here does not refer to functions in the sense of

programming but the more general concept of functionality.

Functional decomposition is thus a technique that is applied beyond the

realm of programming.

De
ve

lo
pe

r
Sp

ea
k

toHtml(...)

 StringBuilder

Listing 2.11: We extracted the HTML generation logic into its own class.

class StringBuilder

{
 private _text: string = "";

 public append(text: string)

 {

 this._text += text;
 }

 public toString(): string

 {
 return this._text;

 }
}

markdown-processor/processor-v6.ts

2

3

4

5

6

7

8

9

10

11

12

13

14

34
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

You may be wondering: Why call the new class instead of ? After all, we

are using it to build HTML. That's a fair point. However, look closely at what that class actually does.

Can you think of a reason now? You will see that it doesn't do anything HTML-specific. It simply

builds up strings, hence the name . In fact, the class isn't even aware of what types of

strings (semantics!) it builds. It could just as well be used to build, for example, XML or JSON strings

instead of HTML. Calling the class would thus be overly specific and might prevent you

from using it for any other string concatenations later on, or - even worse - reimplement that very

logic in a similar class. A9

Next, we will extract the logic of our function that handles each Markdown line by

extracting it into its own function. It takes two arguments: the

 to handle, and the we just introduced. Our

modified function now looks like in Listing 2.12 .

The new function is quite straight forward. All it does is delegate the

concatenation 12 of HTML code to the new instead of doing this itself. See Listing

2.13 .

StringBuilder HtmlBuilder


StringBuilder

HtmlBuilder

toHtml(...)

processMarkdownLine(...)

markdownLine: string stringBuilder: StringBuilder

toHtml(...)

Listing 2.12: The modified toHtml(...) function.

function toHtml(markdown: string): string
{

 const stringBuilder = new StringBuilder();
 const markdownLines = markdown.split("\n");

 for(const markdownLine of markdownLines)
 {

 processMarkdownLine(markdownLine, stringBuilder);

 }

 return stringBuilder.toString();
}

markdown-processor/processor-v6.ts

18

19

20

21

22

23

24

25

26

27

28

29

processMarkdownLine(...)

StringBuilder

function processMarkdownLine(markdownLine: string, stringBuilder: StringBuilder)
{

 if(markdownLine.startsWith("# "))

 {
 stringBuilder.append(`<h1>${markdownLine.substring(2)}</h1>`);

 }
 else

 {

 // here begins the paragraph
 stringBuilder.append("<p>");

 let emTagOpened = false;

markdown-processor/processor-v6.ts

33

34

35

36

37

38

39

40

41

42

43

44

45
12. A fancy word for joining two or more strings.

Ch. 2: Project: A Simple Markdown Processor
35

So far, we have managed to decrease the overall complexity inside : What used to be 48

LOCs and 6 LOIs (cp. Listing 2.10) are now 12 LOCs and 2 LOIs (cp. Listing 2.12). That's a pretty

decent start, but there is more to do. We haven't solved our complexity issue entirely yet as a large part

of complexity was just pushed further down the line and now resides inside

 (41 LOCs and 5 LOIs). This is where we will continue looking for more

independent pieces that we can extract.

Analyzing in Listing 2.13 , we identify yet again two logical parts that

warrant further decomposition. Thinking of Separation of Concerns , what is the problem here?

The principle of SOC is clearly violated here: While lines 35 to 38 deal with headings, lines 41 to 70

deal with paragraphs. Let's separate those two concerns by extracting these into separate functions .

Listing 2.14 shows what the code could look like after the extraction:

Listing 2.13: The new processMarkdownLine(...) function.

 // iterate through the characters
 for(let char of markdownLine.split(""))

 {

 // a * triggers the beginning or end of italicized text
 if(char == "*")

 {
 if(!emTagOpened)

 {

 stringBuilder.append("");
 emTagOpened = true;

 }

 else
 {

 stringBuilder.append("");
 emTagOpened = false;

 }

 }
 else

 {

 stringBuilder.append(char);
 }

 }

 // here ends the paragraph

 stringBuilder.append("</p>");
 }

}

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

toHtml(...)

processMarkdownLine(...)

processMarkdownLine(...)

 



function processMarkdownLine(markdownLine: string, stringBuilder: StringBuilder)
{

 if(markdownLine.startsWith("# "))

 {
 headingToHtml(markdownLine, stringBuilder);

markdown-processor/processor-v7.ts

29

30

31

32

33

36
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

The newly created functions are aptly named and and

shown in Listing 2.15 .

Listing 2.14: The modified processMarkdownLine(...) function.

 }
 else

 {

 paragraphToHtml(markdownLine, stringBuilder);
 }

}

34

35

36

37

38

39

headingToHtml(...) paragraphToHtml(...)

function headingToHtml(markdownLine: string, stringBuilder: StringBuilder)

{

 stringBuilder.append(`<h1>${markdownLine.substring(2)}</h1>`);
}

function paragraphToHtml(markdownLine: string, stringBuilder: StringBuilder)
{

 // here begins the paragraph

 stringBuilder.append("<p>");

 let emTagOpened = false;

 // iterate through the characters

 for(let char of markdownLine.split(""))
 {

 // a * triggers the beginning or end of italicized text

 if(char == "*")
 {

 if(!emTagOpened)

 {
 stringBuilder.append("");

 emTagOpened = true;
 }

 else

 {
 stringBuilder.append("");

 emTagOpened = false;

 }
 }

 else
 {

 stringBuilder.append(char);

 }
 }

 // here ends the paragraph
 stringBuilder.append("</p>");

markdown-processor/processor-v7.ts

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

Ch. 2: Project: A Simple Markdown Processor
37

When modifying our code so heavily, it is of utmost importance that we keep testing its behavior

regularly with the unit tests we have in place. As long as these tests pass, we are good to keep going.

Should any test fail, we know that we have broken something and need to fix it before we can

continue. If we can't find a fix, we can always revert the last changes and continue from where the

code still worked.

So far, we are good: All tests still pass despite all the considerable modifications we have made to

our code base. Can you figure out how much we have reduced the complexity here? We have reduced

the LOCs of from 41 to 11 and the LOIs are down from 5 to 2. Admittedly,

we have pushed some complexity further down into and will deal with this

later. Right now, it's time to implement a new feature.

New Feature: Italics Inside Paragraphs And Headings
We have already implemented the logic to display italicized text inside paragraphs. But we also need to

allow italicized text to be displayed inside headings. We don't want to duplicate any code, so we will

need to find a way to reuse the existing logic that handles Markdown like

 (see Listing 2.9).

Again, we will start with a test that checks for the expected behavior we want. Here's the code:

The existing logic that handles for italic text in Markdown can be found in lines 52 to 75 in Listing

2.15 . We should extract that logic into a separate function , as shown in

Listing 2.17 .

Listing 2.15: The extracted functions.

}79


processMarkdownLine(...)

paragraphToHtml(...)

This is a paragraph with *italic* text.

Listing 2.16: The new unit test.

check("# This is *italic* text",

 "<h1>This is italic text</h1>");

markdown-processor/processor-v8.ts

122

123

*

inlineMarkdownToHtml(...)

function inlineMarkdownToHtml(markdownText: string, stringBuilder:

StringBuilder)
{

 let emTagOpened = false;

 // iterate through the characters

 for(let char of markdownText.split(""))
 {

 // a * triggers the beginning or end of italicized text

 if(char == "*")
 {

markdown-processor/processor-v8.ts

60

↪
61

62

63

64

65

66

67

68

69

38
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

Now, all that is left to do is modify our existing functions and

 to delegate the handling of inline markdown to the new

 function. See Listing 2.18 .

And done! Our test in Listing 2.16 passes now, as do all the previous tests. We have successfully

extended the feature set of our solution.

Listing 2.17: The extracted logic that handles inline Markdown.

 if(!emTagOpened)
 {

 stringBuilder.append("");

 emTagOpened = true;
 }

 else
 {

 stringBuilder.append("");

 emTagOpened = false;
 }

 }

 else
 {

 stringBuilder.append(char);
 }

 }

}

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

headingToHtml(...)

paragraphToHtml(...)

inlineMarkdownToHtml(...)

Listing 2.18: The modified functions delegate the handling of inline Markdown.

function headingToHtml(markdownLine: string, stringBuilder: StringBuilder)
{

 stringBuilder.append("<h1>");

 inlineMarkdownToHtml(markdownLine.substring(2), stringBuilder);

 stringBuilder.append("</h1>");

}

function paragraphToHtml(markdownLine: string, stringBuilder: StringBuilder)
{

 stringBuilder.append("<p>");

 inlineMarkdownToHtml(markdownLine, stringBuilder);

 stringBuilder.append("</p>");

}

markdown-processor/processor-v8.ts

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Ch. 2: Project: A Simple Markdown Processor
39

And Some More: Bold Text
Let's have a quick glance at our initial Markdown sample (see Listing 2.1). We still have to implement

some missing features. We'll handle bold text next (in Markdown).

Basically, handling bold text is not much different from handling italics. Instead of looking for we

just need to look for as delimiters. Let's define this behavior in a new unit test:

If we run the test now, it should fail and return the following output:

What's the matter with those empty tags (lines 3 and 7)? Go through the code and figure

out what's happening! As it turns out, the are not yet interpreted as delimiters for bold text (we

haven't implemented that feature yet). Instead, the first is interpreted as the start of italic text, the

second as the end of italic text. The text in between is empty, hence the empty tags.

Handling delimiters for bold text isn't much different from handling delimiters for italic text.

To implement this feature, we just have to modify the , as

shown in Listing 2.20 .

bold

*

**

Listing 2.19: The new unit tests check for bold text.

check("This is a paragraph with **bold** text.",

 "<p>This is a paragraph with bold text.</p>");

check("# This is a heading with **bold** text.",
 "<h1>This is a heading with bold text.</h1>");

markdown-processor/processor-v9.ts

154

155

156

157

158

Test failed: This is a paragraph with **bold** text.

 Expected: <p>This is a paragraph with bold text.</p>

 Generated: <p>This is a paragraph with bold text.</p>

Test failed: # This is a heading with **bold** text.

 Expected: <h1>This is a heading with bold text.</h1>
 Generated: <h1>This is a heading with bold text.</h1>

1

2

3

4

5

6

7

 
**

*

*

** *

inlineMarkdownToHtml(...) function

function inlineMarkdownToHtml(markdownText: string, stringBuilder:
StringBuilder)

{
 let lastUnconsumedChar: string | null = null;

 let emTagOpened = false;

 let strongTagOpened = false;

 // iterate through the characters

 for(let char of markdownText.split(""))
 {

 // a * triggers the beginning or end of italicized/bold text
 if(char == "*")

 {

markdown-processor/processor-v9.ts

58

↪
59

60

61

62

63

64

65

66

67

68

69

40
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

Listing 2.20: The modified inlineMarkdownToHtml(...) function now supports bold text.

 if(lastUnconsumedChar == "*")
 {

 // **, so dealing with bold text

 if(!strongTagOpened)
 {

 stringBuilder.append("");
 strongTagOpened = true;

 }

 else
 {

 stringBuilder.append("");

 strongTagOpened = false;
 }

 lastUnconsumedChar = null;

 }

 else
 {

 lastUnconsumedChar = char;

 }
 }

 else
 {

 // *, so dealing with italic text

 if(lastUnconsumedChar == "*")
 {

 if(!emTagOpened)

 {
 stringBuilder.append(`${char}`);

 emTagOpened = true;
 }

 else

 {
 stringBuilder.append(`${char}`);

 emTagOpened = false;

 }
 }

 else
 {

 stringBuilder.append(char);

 }

 lastUnconsumedChar = null;

 }
 }

}

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

Ch. 2: Project: A Simple Markdown Processor
41

The key change here lies in the fact that the interpretation of a single character is no longer

unambiguous. Previously, it marked the beginning or end of italic text (depending on whether we had

already opened the tag or not). Now, its interpretation depends on whether there is another

following it or not. If there is, it is a delimiter for bold text. Otherwise, it's a delimiter for italic text.

To distinguish between and characters, we save the very first occurrence of a character in

the variable (l. 60) and do not act on it (cp. l. 88) (hence the notion of

unconsumed). Only when processing the subsequent character, we know whether we are dealing with

a and hence bold text (cp. ll. 72 - 84) or a and hence italic text (cp. ll. 93 - 112).

Once more, let's run our tests to make sure we have implemented the feature as expected. Indeed,

the tests pass.

Having implemented one feature after another, we have been focussing on the implementation

level for quite some time now. Implementing feature after feature may give you a sense of

productivity, but it can easily lead to losing sight of the bigger picture. It's good practice, then, to stop

coding at given intervals and assess the entirety of the code we have written. Let's do that now. Here's

the core code (excluding the testing and string building logic):

*

 *

* ** *

lastUnconsumedChar

** *

function toHtml(markdown: string): string
{

 let stringBuilder = new StringBuilder();

 const markdownLines = markdown.split("\n");

 for(const markdownLine of markdownLines)
 {

 processMarkdownLine(markdownLine, stringBuilder);

 }

 return stringBuilder.toString();

}

function processMarkdownLine(markdownLine: string, stringBuilder: StringBuilder)
{

 if(markdownLine.startsWith("# "))

 {
 headingToHtml(markdownLine, stringBuilder);

 }

 else
 {

 paragraphToHtml(markdownLine, stringBuilder);
 }

}

function headingToHtml(markdownLine: string, stringBuilder: StringBuilder)

{

 stringBuilder.append("<h1>");

 inlineMarkdownToHtml(markdownLine.substring(2), stringBuilder);

markdown-processor/processor-v10.ts

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

42
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

 stringBuilder.append("</h1>");

}

function paragraphToHtml(markdownLine: string, stringBuilder: StringBuilder)
{

 stringBuilder.append("<p>");

 inlineMarkdownToHtml(markdownLine, stringBuilder);

 stringBuilder.append("</p>");

}

function inlineMarkdownToHtml(markdownText: string, stringBuilder:

StringBuilder)
{

 let lastUnconsumedChar: string | null = null;

 let emTagOpened = false;
 let strongTagOpened = false;

 // iterate over the characters
 for(let char of markdownText.split(""))

 {
 // a * triggers the beginning or end of italicized/bold text

 if(char == "*")

 {
 if(lastUnconsumedChar == "*")

 {

 // **, so dealing with bold text
 if(!strongTagOpened)

 {
 stringBuilder.append("");

 strongTagOpened = true;

 }
 else

 {

 stringBuilder.append("");
 strongTagOpened = false;

 }

 lastUnconsumedChar = null;

 }
 else

 {

 lastUnconsumedChar = char;
 }

 }
 else

 {

 // *, so dealing with italic text
 if(lastUnconsumedChar == "*")

45

46

47

48

49

50

51

52

53

54

55

56

57

↪
58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

Ch. 2: Project: A Simple Markdown Processor
43

Assessing our code critically, we have to acknowledge that complexity has crept in once again. Can

you spot it? The function is a sight for sore eyes. It's rather long and

convoluted at 58 LOCs and 5 LOIs. It's time to improve this. A10

Complexity hits yet again. Refactoring to the rescue!
To be clear, there's nothing wrong with hitting complexity. Indeed, it is often better to hit complexity

instead of desperately trying to avoid it by resorting to "overly smart" and unnecessarily abstract

solutions (so-called premature abstractions). A11

Listing 2.21: Our entire codebase after having implemented seven features.

 {
 if(!emTagOpened)

 {

 stringBuilder.append(`${char}`);
 emTagOpened = true;

 }
 else

 {

 stringBuilder.append(`${char}`);
 emTagOpened = false;

 }

 }
 else

 {
 stringBuilder.append(char);

 }

 lastUnconsumedChar = null;

 }

 }
}

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114


inlineMarkdownToHtml(...)

44
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

Keeping things simple and allowing some complexity to build up is necessary in order to figure out

what kind of abstractions are actually needed. As long as we keep looking out for improper

abstractions and act on such unnecessary complexity by refactoring our code, we can effectively

overcome it. Problems arise the moment that we postpone that refactoring step and allow complexity

to build up to a point where it brings development to a halt.

Let's analyze the function to see what's so complex about it and how we

can decompose it. There are a few things that stand out:

1. The notion of unconsumed characters (cp. the variable in lines 59, 69, 93,

etc.) is getting out of hand quickly. It's a rather convoluted way of keeping track of the current

context. We need to find an easier way of handling this.

2. Since and denote both the start and end of text that shall be displayed as italic and bold,

respectively, we have to keep state of this accordingly (cp. lines 72, 77, 95, 100). The way we have

Premature Abstractions are early generalizations in code based not on

actual needs but on speculation and a misguided notion of keeping the

source "clean".

Abstractions are premature if they add indirection without a clear

benefit. Frequently, such a "need" is driven by ideals of a clean codebase

or speculation about how parts of a codebase will be used in the future.

Even developers cannot predict the future, and hence it is better to

wait with generalizations until the need for them becomes obvious. This

idea is the essence of the You Ain't Gonna Need It (YAGNI) guideline.

De
ve

lo
pe

r
Sp

ea
k

Refactoring is the process of improving the (internal) structure of code

without changing its (external) behavior. It is a key technique for keeping

code clean and maintainable. Refactoring is an iterative process that is

best done in small steps and with tests in place. That way you can be sure

that your code still works as expected afterwards.

Think of refactoring as a way to sweep through your code, very much

like you would sweep your home: You remove a few things inside or

move them around, or even add a new piece of furniture. But from outside,

your home still looks the same, still behaves the same. It's still the same home (you

wouldn't notice any difference from the outside), just a bit more organized and

comfortable to live in.

De
ve

lo
pe

r
Sp

ea
k

inlineMarkdownToHtml(...)

lastUnconsumedChar

* **

Ch. 2: Project: A Simple Markdown Processor
45

implemented the tracking of such contextual state is too unwieldy. Here, too, we have to find an

easier way of handling this so we can simply our code.

Having pinpointed the problems in our code, we can set out to look for potential solutions. Let's start

with the first problem (unconsumed characters). Skipping over a character to see how it makes

sense in hindsight (vs.) adds some indirection that complicates things needlessly. Let's get rid of

it. Can you think of a way to reverse this flow, i.e. to look ahead a character?

Let's step back and look at the code from a distance: What are we really trying to achieve through

such lookaheads? We aren't interested in characters, really, but in how these characters make up

larger structures, so-called tokens . What's the difference between characters and tokens? While

itself is just a character with an arbitrary meaning, it becomes a (more meaningful) token when

interpreted in terms of its wider context and what it stands for, e.g. the beginning or end of

emphasized text (which we will turn into italics in HTML). In the same vein, is two characters that

become one token when interpreted as the beginning or end of doubly emphasized text (which we will

turn into bold text in HTML).

When analyzing markup such as Markdown and disassembling it into its structural parts, we are

getting our feet wet in a technique called parsing. A parser makes sense of structural markup through

a tokenizer, which is the logic that takes as input a stream of characters (markup) and returns a stream

of tokens (meaningful units in terms of the target language, in our case: Markdown). The process is

illustrated in Image 2.3 .

Notice that there is not necessarily a one-to-one relationship between characters and tokens. For

example, the two-character sequence is translated into a single token, namely .

Conversely, there can be tokens that do not find any correspondence to characters, e.g. the

, , and tokens, which are all just implied.

*

* **



*

**

A lookahead is an operation on a stream of symbols (e.g. a collection of

characters) whereby the current position in that stream is preserved even

though a symbol ahead of the current position is already checked

("peeked at").

Lookaheads are common operatioms found in parsers, programs that

analyze formal languages by breaking them down into their structural

parts called tokens. Such formal languages follow syntactic rules (a

grammar) that define how well-defined sentences look like.

De
ve

lo
pe

r
Sp

ea
k

** Double Emphasis

Beginning of Stream End of Stream End of Line

46
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

Image 2.3: Markdown tokens vs. a stream of characters A simple string [A] interpreted as a stream of

characters [B] and a stream of Markdown tokens [C].

No worries, we are not going to write a full-blown parser here. But we will write a simple tokenizer that

will help us simplify our code. Such a tokenizer will analyze the Markdown input and translate its

characters into tokens, for example:

 and characters will be translated into and tokens,

respectively.

 and characters will be translated into and tokens,

respectively.

Given the above tokens, your task now is to ponder the question of how you would write such a

tokenizer . You don't have to write any code (though, please feel free to give it a try!), just thinking about

the intricacies of a potential solution will yield worthwhile insights.

Refactoring the Text Domain (Characters)
Keep in mind that a tokenizer that translates characters into Markdown tokens works on two different

levels of abstraction: a stream of characters (input) vs. a stream of tokens (output), which I will

henceforth call Text Domain and Markdown Domain, respectively.

Following Separation of Concerns , it is a good idea to keep those two domains separate so that we

don't increase complexity needlessly by mixing two independent concerns. Starting with the Text

Domain, the logic to handle a stream of characters could look like this:

* ** Single Emphasis Double Emphasis

PrimaryHeading SecondaryHeading





class Char

markdown-processor/processor-v11.ts

98

Ch. 2: Project: A Simple Markdown Processor
47

{
 constructor(

 public readonly value: string)

 {}

 public is(char: Char): boolean
 {

 return this.value == char.value;

 }
}

class Chars

{
 public static readonly NewLine = new Char("\n");

}
class CharStream

{

 private _normalizedText: string;
 private _position = -1;

 constructor(text: string)
 {

 this._normalizedText = CharStream.normalize(text);
 }

 public get length(): number
 {

 return this._normalizedText.length;

 }
 public get isEmpty(): boolean

 {
 return this.length == 0;

 }

 public get isAtStart(): boolean
 {

 return this.isEmpty

 || this._position == 0;
 }

 public get hasReachedEndOfStream(): boolean
 {

 return this.isEmpty

 || this._position >= this.length;
 }

 public get hasReachedEndOfLine(): boolean

 {
 return this.currentChar.is(Chars.NewLine)

 || this.isLastCharOfStream;
 }

 public get isLastCharOfStream(): boolean

 {
 return !this.isEmpty

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

48
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

 && this.hasReachedEndOfStream;
 }

 public get isFirstCharOfStream(): boolean

 {
 return !this.isEmpty

 && this.isAtStart;
 }

 public get isFirstCharOfLine(): boolean

 {
 return this.isFirstCharOfStream

 || this.peek(-1).is(Chars.NewLine);

 }
 public get currentChar(): Char

 {
 return this.getCharAtPosition(this._position);

 }

 public tryConsume(value: string): boolean

 {

 if(!(value?.length > 0))
 {

 throw new Error("Value must not be empty or null.");
 }

 for(var i = 0; i < value.length; i++)
 {

 const expectedChar = value.substring(i, i + 1);

 const givenChar = this.peek(i).value;

 if(givenChar != expectedChar)
 {

 return false;

 }
 }

 this.advance(value.length - 1);
 return true;

 }
 public advance(range?: number): boolean

 {

 range ??= 1;

 if(this.hasReachedEndOfStream)

 {
 return false;

 }

 this._position += range;

 return true;
 }

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

Ch. 2: Project: A Simple Markdown Processor
49

All classes listed in Listing 2.22 deal with the lowest level of abstraction, namely characters. Notice

how this is a self-contained domain that does not reference tokens or even Markdown, which are

concepts that belong to an entirely different domain (more on this later). There are three classes in

total that ware worth discussing.

The class represents a single character identified by its . It allows comparing a character

instance to other characters via so we can establish equality based on character value.

A convenience class lists the most common characters we are dealing with. These serve as

constants that help us reference frequently used characters without having to hard-code them

everywhere.

Finally, the class helps us navigate through a stream of characters. It keeps a pointer to

the current in the stream and allows looking at its current character (),

advancing to the next character (), and peeking ahead a custom amount of characters (

). It also features some positional properties to allow checking whether the end of a line (

) or the stream has been reached (), etc.

Two functions inside the class deserve special attention:

The function is used to normalize the input across different platforms (Windows,

Mac, Linux) by removing all carriage return characters (). Line breaks are thus always represented

by single new line characters (). 13

Listing 2.22: The Text Domain handles a stream of characters

 private peek(offset: number): Char

 {

 return this.getCharAtPosition(this._position + offset);
 }

 private getCharAtPosition(position: number): Char
 {

 if(position < 0

 || position >= this.length)
 {

 throw new Error("End of stream reached.");

 }

 var value = this._normalizedText.substring(position, position + 1);
 return new Char(value);

 }

 private static normalize(text: string): string
 {

 // normalize new lines across platforms

 return (text ?? "").replace("\r", "");
 }

}

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Char value

is(...)

Chars

CharStream

_position currentChar

advance(...)

peek(...)

hasReachEndOfLine hasReachedEndOfStream

CharStream

normalize(...)

\r

\n

13. Historically, Windows uses the carriage return, line feed sequence to denote line breaks whereas Unix just uses .\r\n \n

50
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

The function advances the position of the stream if (and only if) the current

characters match the a given string. This is an all-or-nothing operation, meaning that either

the entire string given is matched (and the position inside the stream advanced) or nothing happens

at all. (This is useful for matching multi-character tokens such as or later on.)

That's all there is to characters and the Text Domain. Next, let's see how we can build upon this code

to parse Markdown text into Markdown tokens.

Refactoring the Markdown Domain (Tokens)
Climbing up one level of abstraction, the Markdown Domain could look like this:

tryConsume(...)

value

** ##

class Token

{
 constructor(

 public readonly value: string)

 {}

 public is(token: Token): boolean
 {

 return this.value == token.value;

 }
}

class Tokens

{
 public static readonly SingleEmphasis = new Token("*");

 public static readonly DoubleEmphasis = new Token("**");
 public static readonly PrimaryHeading = new Token("# ");

 public static readonly SecondaryHeading = new Token("## ");

 public static readonly EndOfLine = new Token("\endofline");
 public static readonly BeginningOfStream = new Token("\beginningofstream");

 public static readonly EndOfStream = new Token("\endofstream");

}
class Tokenizer

{
 private _currentToken: Token = Tokens.BeginningOfStream;

 constructor(
 private readonly _charStream: CharStream)

 {}

 public get currentToken(): Token

 {
 return this._currentToken;

 }

 public get hasReachedEndOfStream(): boolean
 {

 return this._currentToken == Tokens.EndOfStream;

markdown-processor/processor-v11.ts

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

Ch. 2: Project: A Simple Markdown Processor
51

Listing 2.23: The Markdown Domain handles Markdown tokens

 }

 public advanceToNextToken(): boolean

 {
 if(this.hasReachedEndOfStream)

 {
 return false;

 }

 this._charStream.advance();

 this._currentToken = this.getToken();

 return true;
 }

 private getToken(): Token

 {

 if(this._charStream.hasReachedEndOfStream)
 {

 return Tokens.EndOfStream;

 }
 else if(this._charStream.hasReachedEndOfLine)

 {
 return Tokens.EndOfLine;

 }

 else if(this._charStream.isFirstCharOfLine
 && this._charStream.tryConsume(Tokens.PrimaryHeading.value))

 {

 return Tokens.PrimaryHeading;
 }

 else if(this._charStream.isFirstCharOfLine
 && this._charStream.tryConsume(Tokens.SecondaryHeading.value))

 {

 return Tokens.SecondaryHeading;
 }

 else if(this._charStream.tryConsume(Tokens.DoubleEmphasis.value))

 {
 return Tokens.DoubleEmphasis;

 }
 else if(this._charStream.tryConsume(Tokens.SingleEmphasis.value))

 {

 return Tokens.SingleEmphasis;
 }

 // when other options are exhausted, this must be a literal token
 return new Token(this._charStream.currentChar.value);

 }
}

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

52
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

The Markdown Domain consists of these three classes:

The class represents a Markdown token that consists of a string and can be compared

via to other tokens to check for equality based on that value.

The class is another convenience class that lists the tokens recognized by the . It

contains all the tokens already identified in Image 2.3 , plus the token.

The core logic of this domain resides in the class. It takes a instance as a

dependency, from which it consumes characters and parses these into tokens – one after another.

This is done by calling in an indefinite loop until the end of the stream is

reached (you may check this throught the property). Inside the loop, we can

access the .

The actual parsing of characters into tokens is done in . This is where the current

position inside the character stream is checked to infer the correct token from this context. Please

note that the order of checks can be important here: For example, if we checked for the

 token before the token, we might end up with a false positive as

alone always matches .

The checks themselves are pretty self-explanatory, except maybe for the last one (l. 304): This is the

default "fallback" case that is used if none of the other checks return a match. It basically represents

any literal character that is not part of a more specialized token, which is useful for representing plain

text characters.

Refactoring the HTML Domain
Text and Markdown are not the only (sub-) domains our solution consists of. After all, we are

translating Markdown into HTML, so we need to represent HTML as well. This is done in the HTML

Domain, which could look like this:

Token value

is(...)

Tokens tokenizer

SingleEmphasis

tokenizer CharStream

advanceToNextToken()

hasReachedEndOfStream

currentToken

getToken()

SingleEmphasis DoubleEmphasis *

**

class HtmlBuilder

{
 private _html = "";

 private _stack: string[] = [];

 constructor() {}

 private get isStackEmpty(): boolean
 {

 return this._stack.length == 0;
 }

 public peek(): string | null
 {

 if(this.isStackEmpty)

 {

markdown-processor/processor-v11.ts

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Ch. 2: Project: A Simple Markdown Processor
53

 return null;
 }

 return this._stack[this._stack.length - 1];
 }

 public push(tag: string)
 {

 this.makeSureTagIsValidOrThrow(tag);

 const normalizedTag = this.normalize(tag);

 this._stack.push(normalizedTag);

 this._html += `<${normalizedTag}>`;
 }

 public pop(tag: string)
 {

 if(this.isStackEmpty)

 {
 throw new Error("Stack empty, nothing to pop.");

 }

 this.makeSureTagIsValidOrThrow(tag);

 const normalizedTag = this.normalize(tag);

 if(!this.canPop(normalizedTag))

 {
 throw new Error(`Must close tag <${this.peek()}> first.`);

 }

 this._stack.pop();

 this._html += `</${normalizedTag}>`;
 }

 public popRemaining()

 {
 while(!this.isStackEmpty)

 {

 const peekedTag = this.peek()!;
 this.pop(peekedTag);

 }
 }

 public write(text: string)

 {
 // TODO: we should validate the input here and escape special characters

 this.makeSureTextIsValidOrThrow(text);

 this._html += text;
 }

 public toHtml(): string
 {

 return this._html;

 }

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

54
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

The domain consists of a single file , which is responsible for building up the HTML

source code that we return as output. Notice how the class does not depend on any other classes from

our solution, and thus is highly independent. This is a good thing, as it makes the class easier to test

and reuse.

Before venturing into the logic of the , let's quickly discuss the syntactic peculiarities of

HTML itself. HTML is a stack-based language, which means that it is built up from nested elements

in a last-in-first-out fashion.

Listing 2.24: The HTML Domain handles building up the HTML output

 private canPop(normalizedTag: string)
 {

 return this.peek() == normalizedTag;

 }
 private normalize(tag: string): string

 {
 return tag.trim().toLowerCase();

 }

 private makeSureTagIsValidOrThrow(tag: string)
 {

 const validTagRegex = /^[a-z][a-z0-9]*$/im;

 if(!validTagRegex.test(tag))

 {
 throw new Error(`Invalid tag: ${tag}`);

 }

 }
 private makeSureTextIsValidOrThrow(text: string)

 {

 const validTextRegex = /[^<>]*/im;

 if(!validTextRegex.test(text))
 {

 throw new Error(`Invalid text: ${text}`);

 }
 }

}

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

HtmlBuilder

HtmlBuilder

Ch. 2: Project: A Simple Markdown Processor
55

Image 2.4: HTML as a stack-based language

What does it mean for HTML to be stack-based? It means that its structural markup is represented by

a stack of nested elements. We can push and pop as many elements onto and from the stack as long as

we do this in a LIFO fashion, as illustrated in Image 2.4 .

HTML elements are stacked on top of each other in a last-in-first-

out fashion. The stacks on the right represent the state of the HTML elements given at the position of the caret

sign (‸).

The stack-based character of HTML is directly reflected in the : It starts out with an

empty and offers operations to and tag elements onto and from the stack. A

A stack is an abstract data type that represents a collection of elements

with two basic operations: The push operation adds an element to the

collection, while the pop operation removes the most recently added

element that has not yet been removed.

You can visualize the collection as a stack of plates: Pushing adds a

plate on top of an existing pile of plates, while popping removes the

topmost plate. This is why stacks are also called LIFO (last in, first out)

data structures.

De
ve

lo
pe

r
Sp

ea
k

HtmlBuilder

_stack push(...) pop()

56
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

 function allows us to look at the topmost element on the stack without removing it. A

 function is used to pop all remaining elements from the stack.

The keeps both track of the stacked elements and the HTML source code that is built

up from these elements: Whenever an element is pushed or popped, the corresponding HTML tag is

appended to the string. A function allows us to add arbitrary literal characters

between the tags. Note that any such input should be properly validated and escaped to prevent

security vulnerabilities (omitted here for brevity, only checks for

angle brackets, which are reserved for tags).

Finally, the function returns the final HTML source code. Note that any tags pushed and

popped to and from the stack are validated inside the function and

also normalized inside . The latter is done because HTML is not case-sensitive, so all tags

are handled as lower-case strings.

Bringing it all together: Translating Markdown to HTML
Having refactored our solution into clearly separated domains of HTML, Markdown, and Text, we can

now set out to tie lose ends and bring the entire logic together. This is done in the

class, which is responsible for translating Markdown into HTML. It looks like this:

peek()

popRemaining

HtmlBuilder

_html write(...)

makeSureTextIsValidOrThrow()

toHtml()

makeSureTagIsValidOrThrow()

normalize

MarkdownProcessor

class MarkdownProcessor
{

 public static toHtml(markdown: string): string

 {
 const charStream = new CharStream(markdown);

 const tokenizer = new Tokenizer(charStream);

 const htmlBuilder = new HtmlBuilder();

 while(tokenizer.advanceToNextToken())
 {

 this.translateTokenToHtml(tokenizer.currentToken, htmlBuilder);

 }

 htmlBuilder.popRemaining();

 return htmlBuilder.toHtml();

 }

 private static translateTokenToHtml(token: Token, htmlBuilder: HtmlBuilder)

 {
 if(token.is(Tokens.PrimaryHeading))

 {

 htmlBuilder.push("h1");
 }

 else if(token.is(Tokens.SecondaryHeading))
 {

markdown-processor/processor-v11.ts

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

Ch. 2: Project: A Simple Markdown Processor
57

 htmlBuilder.push("h2");
 }

 else if(token.is(Tokens.EndOfLine))

 {
 // headings and paragraphs are terminated at the end of a line

 const topmostItem = htmlBuilder.peek();

 if(topmostItem &&

 ["h1", "h2", "p"].includes(topmostItem))
 {

 htmlBuilder.pop(topmostItem);

 }
 }

 else if(token.is(Tokens.SingleEmphasis))
 {

 // if we already have an tag on the stack,

 // this * will close it, otherwise we open it
 if(htmlBuilder.peek() == "em")

 {

 htmlBuilder.pop("em");
 }

 else
 {

 htmlBuilder.push("em");

 }
 }

 else if(token.is(Tokens.DoubleEmphasis))

 {
 // if we already have a tag on the stack,

 // this ** will close it, otherwise we open it
 if(htmlBuilder.peek() == "strong")

 {

 htmlBuilder.pop("strong");
 }

 else

 {
 htmlBuilder.push("strong");

 }
 }

 else if(!token.is(Tokens.EndOfStream))

 {
 if(htmlBuilder.peek() == null)

 {

 htmlBuilder.push("p");
 }

 htmlBuilder.write(token.value!);

 }

 }
}

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

58
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

The class reminds us of our initial function. It still takes as input a

 and returns HTML as a . Remember that refactoring means keeping the

outward behavior (and interface) of a unit intact, while improving its inner structure. This is exactly

what we did: The function still behaves as expected (it still translates Markdown into HTML),

but its inner structure has changed. Instead of doing all the work itself, it now delegates to the various

classes of our solution.

If we run our initial tests, we should see that all tests pass. There are also two new tests in place to

cover Secondary Headings, which are now implemented as well. Checking the complexity of our

solution, we see that no function holds more than 3 LOIs. The longest function is

 inside our , which is still very much manageable

with only slightly over 50 LOCs.

Extending our Solution: Unordered List Items
We have refactored our initial solution nicely and removed a lot of complexity, thus making the

codebase easier to read and maintain. We will now see how maintainable code helps scale our

solution when new requirements come up (a thing that happens all-too frequently in the real world).

Going back to the Markdown features in Image 2.1 , we see that we have yet to implement support for

unordered list items. Let's do this now.

We start, as always, by adding a new test case:

Next, we need to add a new token type to our class:

Now we need to extend our so that it recognizes unordered list items:

Listing 2.25: The Markdown Processor brings all subdomains together

MarkdownProcessor toHtml()

markdown: string string

toHtml()

translateTokenToHtml(...) MarkdownProcessor

Listing 2.26: Adding a new test case for unordered list items

check('* This is a list item\n* This is another list item',
 'This is a list itemThis is another list item

');

markdown-processor/processor-v12.ts

463

464

↪

UnorderedListItem Tokens

Listing 2.27: Adding a new token type: UnorderedListItem

public static readonly UnorderedListItem = new Token("* ");

markdown-processor/processor-v12.ts

242

Tokenizer

else if(this._charStream.isFirstCharOfLine

 && this._charStream.tryConsume(Tokens.UnorderedListItem.value))
{

 return Tokens.UnorderedListItem;
}

markdown-processor/processor-v12.ts

298

299

300

301

302

Ch. 2: Project: A Simple Markdown Processor
59

Finally, our has to translate tokens into HTML:

That's it already! Our newly added test should pass now. That's all it took to add a completely new

feature: 22 LOCs and an added test case. This is the power of maintainability: It allows us to scale our

solution with relative ease provided that we keep a look out for complexity.

Conclusion, Recap, Exercises
Our simple Markdown processor is done. We have implemented some of the most important features.

Of course, our solution is far from finished or perfect, and yet it has taught us many valuable lessons.

We would still have to check for and implement more advanced use cases as well as test edge cases.

We will discuss these topics in the context of other projects in later chapters, but for now the topic of

Markdown shall be closed.

In this chapter, we set out to gain some hands-on experience under real-world conditions. We

started with a clear goal of developing a simple Markdown processor. Our solution was guided by

Gall's Law and the idea of starting with the simplest idea imaginable. This approach served us well

in keeping our codebase simple while implementing some basic features.

The feature implementations were driven by unit tests, which we wrote after the implementation

code. Understanding that testing is also a good way to understand what our codebase is required to do

from a behavioral viewpoint, we set out to write tests first, that is: before implementing the features.

We also realized how an ever growing body of test cases helps with spotting regressions.

At a certain point complexity crept in and we had to start rearranging our code. We used the

technique of Functional Decomposition to break down a large function into smaller, more cohesive

Listing 2.28: Extending the Tokenizer class to recongize UnorderedListItems

MarkdownProcessor UnorderedListItem

Listing 2.29: Extending the MarkdownProcessor class to translate UnorderedListItem tokens

else if(token.is(Tokens.UnorderedListItem))

{
 // if we have already opened a tag, we can add the item

 // otherwise, we need to open the list first

 if(htmlBuilder.peek() == "li")
 {

 htmlBuilder.pop("li")
 }

 else

 {
 htmlBuilder.push("ul");

 }

 htmlBuilder.push("li");

}

markdown-processor/processor-v12.ts

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400



60
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

functions. This worked well and allowed us to implement some more features until (you name it!)

complexity struck yet again.

At that point, we had to resort to some more heavy refactoring, during which we broke down our

codebase into several clearly separated subdomains – lead by the principle of Separation of

Concerns . The final solution kept complexity to a minimum and allowed us implement new features

with relative ease.



The following exercises are meant to sharpen your skills and apply the

knowledge you have gained in this chapter. They are not required to

continue with the book, but they will help you internalize the concepts

and techniques we have discussed so far. If you do not want to do all the

exercises, feel free to skip some and pick those that you deem most

useful.

Exercise 2.1: Have a look at Listing 2.1 and Image 2.1 . There are two features we

haven't implemented in our solution: ordered list items and links. Extend our

codebase by implementing these.

Exercise 2.2: Check our implementation of the Text Domain in Listing 2.22. Why

didn't we name the variable simply or

similar?

Exercise 2.3: Revisit the various sub-domains our codebase is divided into. What is

the purpose of each sub-domain? Why do we need sub-domains at all?

Exercise 2.4: Explain the following development terms and dichotomies using

examples from the code we implemented: implementation vs. interface,

abstraction, information hiding, trade-off, technique vs. technology, functional

decomposition, refactoring.

Exercise 2.5: Explain Gall's Law and how we followed it in our solution.

Exercise 2.6: Find code in our solution that exemplifies the concept of

encapsulation. Why do we need it? What are the benefits?

Exercise 2.7: Find code in our solution that exemplifies the principle of

Separation of Concerns . What is it? How does it help us?

Exercise 2.8: What is a software developer's prime responsibility? Can you exemplify

this using code from our solution?Ex
er

ci
se

s

Chars.Asterisk Chars.EmphasisCharacter





Appendix A: Endnotes
61

Appendix A: Endnotes
This Appendix contains notes that expand on ideas in the chapters. These notes are not essential to

the discourse of the book yet may provide additional explanations as well as food for thought to

some readers.

A1 On Counting the Developer's Way (Ch. 0)
You might be wondering why the chapter numbering starts at zero. Unlike in everyday life, where we

count with natural numbers (and hence start counting at one), developers start counting at zero. This

may seem unnatural at first and it certainly takes some time getting used to.

The reason behind this odd way of counting is that developers frequently work with data structures

that keep multiple elements of the same type closely together (e.g. arrays) and thus require a

contiguous block of memory (i.e. a block with no breaks in between its elements). The advantage here

is that the location of each element inside the block can easily be calculated through its numerical

index.

Instead of saving the memory location for each element separately (which would waste a lot of

resources), we only need to save the memory location (called base address) of the block itself (which is

the location of the first element, hence index zero) and the total size of the block (total number of

elements). Using a simple calculation like ma(i) = b + i * s, where ma(i) denotes the memory address of

element i, b is the base address (location of the memory block), and s is the size of each element. This

is a very efficient way of storing and retrieving data and is used in many programming languages. An

example of such a calculation is shown in Image A1.1 .

62
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

Image A1.1: Memory Allocation of an Array A simplified illustration of how an array is stored in memory. The

array consists of four elements, each of the same size of 2 bytes [B]. The base address is 5 [A]. The element with

index 0 is located at address 5, index 1 at address 7, index 2 at 9, index 3 at 11 [C].

The downside to this kind of counting is that when iterating over all items of an array with n elements

in total, we need to keep in mind that the last element's index is n-1 and not n (e.g. given ten items in an

array, their indices are 0 to 9, not 1 to 10). This can be overlooked easily and lead to bugs that are so

frequent that they even have a name: Off-By-One Error (OBE) .

The following code listing exemplifies a typical Off-By-One Error when iterating over elements of an

array:

Off-By-One Errors (OBEs) are common errors that occur when

developers access elements of an array or other contiguous data

structures counting from one (the natural way of counting) instead of

zero, which is how computers store such data. For example: An array

with ten elements has the indices 0 to 9, not 1 to 10. The last element is at

index 9, not 10.

De
ve

lo
pe

r
Sp

ea
k

const persons = ["Alice", "Bob", "Caesar", "Dora"];

for(let i = 0; i <= persons.length; i++)

1

2

3

Appendix A: Endnotes
63

The problem with Listing A1.1 is that it iterates five times despite the array only having four

elements. The last iteration (when i is) tries to access the fifth element of the array, which does not

exist. Instead of throwing an error, JavaScript returns undefined in this case.

The culprit here is the condition on line 3. It should actually be

 because the index that equals the length of the array is one too high (we start

counting at zero, remember?).

A simple way of avoiding such OBEs is by ditching the "manual" loop and use or a

similar, more declarative 14 method that avoids manual counting. The following code listing shows

how the OBE could have been avoided:

A2 On Grammar, Words, and Natural vs. Artifical Languages (Ch.

1)
Interestingly, we also call the basic unit of data that computers work with 'words'. In the same vein,

computer languages have grammar (syntax) and vocabulary. The resemblance to natural languages

doesn't stop there.

From a linguistic point of view, natural languages and programming languages can be placed on

two very different complexity levels of language in general. If you have ever dealt with foreign

languages at school (remember your French classes?), you certainly know that learning a natural

language is so much more difficult than learning the syntax of a programming language.

Listing A1.1: A typical Off-By-One Error when iterating over the elements of an array.

{
 // logs: Alice, Bob, Caesar, Dora, undefined

 console.log(persons[i]);

}

4

5

6

7

4

i <= persons.length

i < persons.length

for for each

Listing A1.2: A declarative programming style can avoid OBEs in for loops.

const persons = ["Alice", "Bob", "Caesar", "Dora"];

for(let person of persons)
{

 // logs: Alice, Bob, Caesar, Dora

 console.log(person);
}

1

2

3

4

5

6

7

14. We will soon learn more about the meaning of declarative and what it entails. For the time being, just understand it as
something synonymous with expressive, direct, elucidating, communicative.

64
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

A3 On Technique vs. Technology (Ch. 1)
There is an important distinction to be made between two seemingly similar (yet fundamentally

different) concepts: technique vs. technology.

An example will shed light on the differences between the two terms. Many applications allow

multiple users to edit data concurrently (= "in parallel"). This can cause conflicts when two or more

users edit the same data at the same time (concurrency issues). To mitigate the risks involved therein,

you need to handle such conflicts gracefully, e.g. by allowing users to lock data before editing it (so that

no other user can edit it at the same time). Knowing that these concurrency issues exist and how to

address them in general is a technique ("conflict resolution"), i.e. abstract knowledge gained over

years of experience. However, knowing what concrete options exist on a given hardware and software

stack (e.g. MySQL vs. MongoDb) is technology-related knowledge.

While technique is usually cumulated, inferred wisdom that shows a certain resistance to change,

evolves comparatively slowly, and adapts to new situations, technology is fast-paced and becomes

obsolete rather quickly (see Image A3.1).

Technique (from the Greek word 'τέχνη': art) refers to an abstract way of

doing things. It can be translated with 'craft' and 'knowledge', which are

both involved in the process. Technique is meant to solve abstract,

general problems independent of the concrete tools (see Technology)

used.

Technology (from the Greek word 'τεχνολογία': systematic treatment,

related to but different from 'τέχνη'), on the other hand, refers to a

concrete tool, usually a piece of software or hardware (or combination

thereof) meant to solve specific problems.

De
ve

lo
pe

r
Sp

ea
k

Appendix A: Endnotes
65

Image A3.1: Technique vs. Technology The two domains of technique vs. technology compared, with

examples of what they entail (not exhaustive).

The key takeaway here is that learning technologies is time well invested if they are taken as means to

an end. The end should always be practicing and furthering our understanding of the techniques

behind them.

Obviously, technological knowledge is essential because as developers we craft tangible solutions,

not theories. But the risk of acquairing soon-to-be obsolete knowledge is hanging over us like a sword

of Damocles, which is why the meta knowledge of techniques is so important: it transfers over to new

technologies easily and allows us to deal with the incessant influx of new, often short-lived

technological products and changes by pivoting into new roles and perspectives without ever having

to start from scratch again.

66
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

A4 On Trade-Offs and Trade-Off Continua (Ch. 1)
To exemplify what a typical trade-off could look like, imagine we're developing a note-taking app that

allows users to create small pieces of texts. Those texts need to be persisted 15 between sessions so

that when a user logs off the system and logs on again at a later point, all their texts are still there.

Now, we can either develop our own persistence storage (say, a relational database) or hook our app

up to a third-party API that does the persistence for us (say, a cloud-based service). The trade-off to

consider here is ease of maintenance vs. vendor independence: Creating our own database (Point A in

Image A4.1) gives us maximum independence (all software is under our control) but has

significantly higher maintenance costs attached to it (because we have to develop and maintain the

database system ourselves). Using a cloud-based, third-party storage service [Point B], on the other

hand, gives us a maximum ease of maintenance (the third party will maintain the software for us) but

also makes our product entirely dependent on it. Should the third-party decide to cease its service (a

worst-case scenario), we are left with a non-functional app.

We can see clearly that the two opposing extremes (points A and B) are mutually exclusive and as

such associated with significant disadvantages each (hence the red zones). Luckily, these two goods

aren't simply binary but gradual in nature, so there is a continuum (varying degrees) between them.

We are likely to find a "sweet spot" (point C) somwhere in the middle where we can get acceptable

degrees of both goods (hence the green zone).

15. A fancy word for "to save": to persist = to continue to exist, to save to permanent memory, e.g. hard disk (as opposed to
volatile memory, e.g. RAM).

Appendix A: Endnotes
67

Image A4.1: A Typical Trade-Off Continuum The (somewhat idealized) trade-off depicted here spans a

continuum between the two qualities "vendor independence" and "ease of maintenance". The red zones show

areas that are generally unfavorable because one of the qualities tends towards zero. The green zone usually

holds the "sweet spot" where a reasonable compromise between the two can be found.

In our example, we could opt for a self-hosted, off-the-shelf (third-party) database system. That way,

we wouldn't have to develop the system ourselves but we would still host it in-house (on premise) so as

not to depend entirely on a third-party service. This trade-off gives us a reasonable amount of vendor

independence while keeping the ease of maintenance at a manageable level.

To clarify, decisions like this one can usually be analyzed under various opposing pairs of qualities,

hence different types of continua and trade-offs co-exist at the same time. At the core of every

decision we make lies our ability to reason about the bigger picture in terms of a multitude of co-

existing trade-offs. Battles in tech are lost and won based on how me make sense of those.

A5 On Iterative vs. Incremental Processes and Software

Development (Ch. 2)
The two concepts iterative and incremental are sometimes used synonymously, even though they

denote two different processes.

An iterative process involves repetition ("iteration"). Looping over a series of numbers (say from zero

to 100) is an iterative process. So is riding a bicycle (our legs do the iterative work).

An incremental process, on the other hand, involves growth, an addition of something to what

already exists. Incrementing an integer is (logically) an incremental process as it adds or subtracts a

68
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

given amount to an already existing quantity, usually one. Climbing a flight of stairs is another

example of an incremental process (each step adding to the sum of steps already climbed).

Iterative processes need not necessarily be incremental ones, and vice versa. Incrementing an

integer variable in a loop is both incremental and iterative. However, one could also loop without

incrementing, or increment without looping.

As far as software development is concerned, the process is usually both iterative (developers

analyze, rearrange, and refine a codebase repetitively) and incremental (developers add small

changes and features to the codebase each time they work on it).

A6 On Tight Feedback Loops (Ch. 2)
Feedback is the response or reaction to an action. It's called that way because it "feeds back" into your

decision-making by helping you evaluate your previous action. Such feedback is tight if the response

follows quickly and allows you to adapt your actions constantly.

Let's consider a simple example (see Image A6.1): Assuming we are dealing with JavaScript and

want to know if zeroes are among the many expressions interpreted as (type coercion). Instead

of looking up the relevant bits in the docs, we can just have the runtime answer this question for us.

We start our browser and enter into the console. The is the logical NOT operator (negation). 16 It

negates a boolean expression (becomes , and vice versa). The console spits out , so it

follows that , while not a boolean itself, was indeed interpreted as .

A tight feedback loop is essential in software development because it gives you immediate

knowledge that you can act on. If such loops follow in rapid succession, they help you accumulate

insights quickly and thus serve as a most valuable corrective in your decision-making.

false

!0 !

true false true

0 false

16. See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_NOT

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_NOT

Appendix A: Endnotes
69

Image A6.1: Tight Feedback Loop A feedback loop starts with an Action, awaits a Reaction, which it then

Evaluates in order to make a Decision that guides the next action. Frequently, Questions or problems instigate

the action that sets off the loop. A feedback loop is tight when it is accurate and all its parts execute instantly.

Tight feedback looping tends to happen repetitively.

A7 On Brains vs. Computers (Ch. 2)
Our brain is an evolutionary mircale and quite adept at handling a plethora of information. Clearly, it

needs to because we are constantly surrounded by it. It's not surprising then that our brain has often

been used as a metaphor for computers (and vice versa). But the two are not the same. The brain is far

from being as perfect a processor or storage device as the computer.

Unlike computers, which are very good at keeping track of details and remembering things (but

plainly error out as soon as they run out of memory!), our brains are evolutionarily programmed to

keep working even under intense pressure (mental load!). To do so, they resort to a little trick: When

complexity rises above certain levels (for example, a large number of items to remember in our short-

term memory), our brains tend to start rearranging information through generalization. This process

involves dropping details in favor of broader subsumptions (trade-offs!). That way, we can still make

sense of our complex world, but only on a higher abstractional level.

Now, generalization under a high mental load may work splendidly in real life. When reasoning

about code, though, it can easily run into problems! The processing of information done by computers

and brains are fundamentally different because both opt for different coping mechanisms.

70
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

A8 On Separation of Concerns (Ch. 2)
The practice of separating things that deal with separate concerns is a guiding principle aptly called

Separation of Concerns (SOC).

It is one of the most important principles in software development and should always warn you to

not mix things together that don't belong together. As such, the principle is based on the universal

idea of cohesion and works on every level: from the concrete implementation level to the abstract

architectural level.

For example, when implementing a class that deals with sending e-mails, we are well advised to

keep the e-mail details (recipient, subject, body) separate from the details of how the e-mail is sent

(SMTP, IMAP, etc.). The former is a concern of the e-mail itself, whereas the latter is a concern of the e-

mail transport. Mixing the two concerns together would make our code unnecessarily complex and

less maintainable.

To use a more mundane example: Have you ever wondered why you keep your stuff at home in

rooms, drawers, cupboards, and the like? Why not just throw everything into one big pile? The answer

is that it would be impossible to find anything. The same principle applies to software: If you mix

things together that don't belong together, you will end up with a big pile of code that is impossible to

maintain.

A9 On Naming Things (Ch. 2)
Surprisingly, naming stuff (variables, classes, modules, whatever) is one of the toughest things to get

right in programming, and that in Listing 2.11 is a case in point.

Why is naming important? As already discussed in Truths and Myths About Software Development (p.

13) that we write code for our fellow developers, not for machines. We need to communicate

effectively with our colleagues so they know how to use, fix, and extend our code. Communicating

intent works best when we use identifiers that are precise and expressive.

StringBuilder

Identifiers are names given to variables, functions, types, classes, and

labels in our code. Identifiers allow us to refer to parts of our code or state

kept in memory. Unlike keywords, identifiers are not part of the

programming language itself but are defined by the programmer. That's

why they usually follow a strict naming convention and have to be unique

in the context they are used. This also means that identifiers cannot

overlap with existing keywords. For example: is a keyword for a

control structure in JavaScript and TypeScript and hence you cannot use

the name as an identifier for, say, a variable.

De
ve

lo
pe

r
Sp

ea
k

for

Appendix A: Endnotes
71

The key to finding good names is constant, critical reflection of what we have already written. Nothing

we write is set in stone. Everything can (and likely will be) changed at a later time. When needing to

find a good name for a new variable, say, we can always go with what comes to mind first. There's

nothing wrong with that. But then, we should come back to that name later and ask ourselves: Is this

name still a good fit? Does it still express the intent of the code? If not, we should change it. The idea

here is to approach something like the perfect name in small increments.

A10 On Assessing Complexity (Ch. 2)
You might be wondering at this point: How do I know if a function is too long or too convoluted? Rather

than giving you any arbitrary hard limits, consider what the function does: If it implements some

rather simple logic, thirty LOCs might already be too much, while fifty might still be okay for more

elaborate logic. As for LOIs, I personally try to keep them to a maximum of three. If I have more than

three, I try to extract the logic into separate functions.

The key idea, though, is to keep local contexts as small as possible: By keepig code coherent (similar

things go together, different things are better kept separate) and not mixing different abstractional

levels into the same units (functions, classes, modules, etc.). With time you will gain enough

experience to be able to listen to your gut feeling regarding complexity. Until then, you can always ask

a colleague for a second opinion.

A11 On Premature Abstractions (Ch. 2)
To give a real-world example of a premature abstraction: If you send a few letters by snail mail a year,

you can probably get away with just buying stamps at the post office and stamping them manually.

Should you decide to buy a postage meter, instead, and have the stamping done automatically, you are

probably falling victim to a premature abstraction.

The additional time and expenses needed to buy that machine will most probably never be

amortized over its lifetime. Chances are you ain't gonna need that postage meter (YAGNI) and you

would have been better off just doing the stamping manually. If at some point you find yourself

sending a few hundred letters a year, you can still decide to automate the process.

72
The Craft of Software Development — A Practical Introduction ❖ Sebastian Felling

Appendix B: Setting Up
A Development
Environment

To be written.

Appendix C: Short Introduction to TypeScript
73

Appendix C: Short
Introduction to
TypeScript

To be written.

